The Civil Aviation Safety Authority did not require builders of amateur‑built experimental aircraft to produce a flight manual, or equivalent, for their aircraft following flight testing. Without a flight manual the builder, other pilots and subsequent owners do not have reference to operational and performance data necessary to safely operate the aircraft.
The maintenance program for the aircraft’s landing gear did not adequately provide for the detection of corrosion and cracking in the yoke lug bore.
The smoking policy and associated risk controls on board Ocean Drover were not effectively managed. While use of designated smoking rooms was identified as the preferred option, smoking was permitted in cabins. In addition, approved ashtrays were not always used to extinguish and dispose of cigarettes.
Ocean Drover’s bridge deck stairwell fire door was fitted with a holdback hook in contravention of international regulations. The door was hooked open, which allowed the fire to spread to the bridge deck from the deck below.
Thicker 7/16 inch diameter through-bolts, fitted to newer Jabiru engines and some retro-fitted engines, have had limited service to date to confirm early indications that they reduce this risk. Retro-fitting engines with thicker through-bolts has only been recommended for aircraft involved in flight training by JSB031 issue 3.
The documented procedure for eddy current inspection of M18 wing attachment fittings did not assure repeatable, reliable inspections.
Important information relating to Civil Aviation Safety Authority (CASA) airworthiness directive AD/PZL/5 was not contained in CASA’s airworthiness directive file, but on other CASA files with no cross-referencing between those files. This impacted CASA’s future ability to reliably discover that information and make appropriately‑informed decisions regarding the airworthiness directive.
The engineering justification supporting Australian supplemental type certificate SVA521 did not contain consideration of the effect an increase in the average operating speed could have on the rate of fatigue damage accumulation.
Although wing removal was necessary to provide adequate access for effective visual and magnetic particle inspections of M18 wing attachment fittings, the aircraft manufacturer’s service bulletin E/02.170/2000 allowed the wings to remain attached during these inspections.
The Civil Aviation Safety Authority did not have a defined process for a robust, systematic approach to the assessment and approval of alternative non-destructive inspection procedures to ensure that the proposed method provided an equivalent, or better, level of safety than the original procedure.
Operators of some Australian M18 Dromaders, particularly those fitted with turbine engines and enlarged hoppers and those operating under Australian supplemental type certificate (STC) SVA521, have probably conducted flights at weights for which airframe life factoring was required but not applied. The result is that some of these aircraft could be close to or have exceeded their prescribed airframe life, increasing the risk of an in-flight failure of the aircraft’s structure.
Operation of M18 aircraft with a more severe flight load spectrum results in greater fatigue damage than anticipated by the manufacturer when determining the service life of the M18. If not properly accounted for, the existing service life limit, and particular inspection intervals, may not provide the intended level of safety.
The eddy current inspection used on VH-TZJ, and other M18 aircraft, had not been approved by the Civil Aviation Safety Authority as an alternate means of compliance to airworthiness directive AD/PZL/5. This exposed those aircraft to an inspection method that was potentially ineffective at detecting cracks in the wing attachment fittings.
The safety culture on board Cape Splendor was not well developed and the ship’s managers had identified it as such. A consequence of this inadequacy was the ineffective implementation of working over the side procedures, including the general belief by its crew that safe work practices applied only when working, and not during recreational activities.
Cape Splendor’s safety management system (SMS) procedures for working over the side of the ship were not effectively implemented. As a result, the ship’s crew routinely did not take all the required safety precautions when working over the side. Further, they did not consider that any such precautions were necessary if going over the side when not working.
The spin recovery methods taught by the flying school were inconsistent across instructors and training material, and were not always appropriate for the Chipmunk aircraft type used by the school.
Sydney Trains' fatigue management processes were ineffective in identifying the fatigue impairment experienced by the driver.
The JRA-776-1 fuselage lateral tie rods that were inspected by the ATSB were not appropriately marked with part and serial numbers, affecting the traceability and service history of the parts in a number of aircraft.
Although a number of aerobatic manoeuvres were permitted in Tiger Moth aircraft, there was no limitation on the amount of aerobatic operations that was considered to be safe. As a result, operators may be unaware that a high aerobatic usage may exceed the original design assumptions for the aircraft.
Together with a number of other Australian Tiger Moths, VH-TSG was fitted with non‑standard Joint H attachment bolts that did not conform to the original design with the result that the integrity of the Joint H could not be assured.