A variety of techniques to indicate and record rail stress at specific locations are available, however, Aurizon had not used any of these techniques in some locations with elevated risk of rail stress, such as tangent track on steep grades. As a result, Aurizon could not readily determine the presence or absence of compressive rail stress at these locations.
When planning track disturbing work, Aurizon’s normal practice was to use its Hazard Location Register as a record of past occurrences at a specific location. Aurizon did not use the Hazard Location Register as a resource to consider the situational characteristics of a location that may increase risk, such as continuous welded rail, track gradient and proximity to fixed points such as turnouts or level crossings.
The hydrographic use of point feature objects to represent physical features of relatively significant spatial extent on an Electronic Navigational Chart can increase the risk of the hazard posed by such features being misinterpreted by mariners and potentially reduce the effectiveness of the ECDIS safety checking functions.
ECDIS on board most Australian Border Force cutters, including ABFC Roebuck Bay, operated with a non-type-approved naval software version that was not updated to the latest applicable standards of the International Hydrographic Organization. The ECDIS therefore did not comply with the minimum requirements of an ECDIS being used to meet the chart carriage requirements of the regulations. As a result, the enhanced safety features of the new presentation library, which would have potentially alerted the officers to the danger posed by the reef, were not available.
Most Australian Border Force cutters, including ABFC Roebuck Bay, were installed with ECDIS operating on non-type-approved naval software. Subsequently, DNV GL, acting on behalf of the Australian Maritime Safety Authority, incorrectly certified these vessels as using type-approved ECDIS to meet the chart carriage requirements of the regulations. This removed an opportunity to put in place controls to ensure ongoing safety compliance.
Although the online VisionMaster FT ECDIS type-specific familiarisation training included the relevant content, the training as undertaken by Australian Border Force deck officers was not effective in preparing ABFC Roebuck Bay's officers for the operational use of the ECDIS.
Queensland Rail’s track monitoring and inspection processes were not effective in identifying significant deterioration in the condition of level crossing ID 2309 and its approach roads to ensure the safe operating limits of the level crossing throughout its lifecycle.
The GATX 840P1 axle was susceptible to fatigue cracking due to relatively minor damage that was not reliably detected prior to failure.
Anomalies in the magnetic particle inspection procedures likely led to the crack not being detected.
As a legacy of there being no inspection specific to an in-flight pitch disconnect, there is potential for other ATR aircraft to have sustained an in-flight pitch disconnect in the past and be operating with undetected horizontal stabiliser damage.
The aircraft manufacturer, ATR, did not provide a maintenance inspection to specifically assess the effect of an in-flight pitch disconnect on the structural integrity of the horizontal stabilisers. As a result, if an in-flight pitch disconnect occurred, the aircraft may not be inspected at a level commensurate with the criticality of the event.
Although the design standard for the aircraft (JAR-25) required the control system to be of sufficient strength to withstand dual control inputs, it did not require consideration of the effect that dual control inputs may have on control of the aircraft. Similarly, the current design standard (CS-25) does not address this issue.
Response from EASA
In September 2018, EASA advised the ATSB that:
The design standard for large transport aircraft, Joint Aviation Requirements - Part 25 (JAR-25), did not require that the demonstrated potential for flexibility in the control system to develop transient dynamic loads, be considered during certification. Similarly, the current certification standard for Large Aeroplanes (CS-25) does not address this issue.
Flexibility in the ATR 72’s pitch control system between the control columns results in a change in the aircraft’s longitudinal handling qualities and control dynamics when dual control inputs are made. This could result in an aircraft-pilot coupling event where flight crew may find it difficult to control the aircraft.
The design of the ATR 72 pitch control system resulted in limited tactile feedback between the left and right control columns, reducing the ability of one pilot to detect that the other pilot is making control inputs. In addition, there were no visual or auditory systems to indicate dual control inputs.
Errors remained within the ALCAM database due to the type of equipment used to measure road and rail bearings during ALCAM surveys in 2009.
V/Line’s level crossing assessment processes did not result in deployment of available risk controls at many passively protected acute-angle level crossings.
More than 100 level crossings in the V/Line regional rail network (including 35 at the intersection of passenger lines and public roads) were non-compliant with the left-side viewing angle requirements of AS 1742.7:2016. These crossings had an acute road-to-rail angle that affected the ability of drivers to sight trains approaching from their left.
The interaction between V/Line and the Colac Otway Shire Council was ineffective at addressing identified sighting issues at the Phalps Road level crossing.
Available risk controls to manage the risk posed by known sighting deficiencies at the Phalps Road level crossing were not deployed by V/Line or the Colac Otway Shire Council.