

Contents

- 3 'Mateship' and responsibility
- 4 Carriage of liquid nitrogen in the cabin of small aircraft freighters
- 5 Ultra-lights and low-level turbulence
- 6 Flying Vyse, and the pilot's handbook
- 7 Assessing a forecast
- 8 A circling approach
- 10 Unauthorised modification
- 11 Carbon monoxide poisoning
- 12 Outside storage of fuel and oil drums stop water contamination
- 13 Know your systems: the mixture control
- 17 Helicopters and ground fires
- **18 Dynamic rollover**
- 20 An eventful weekend (reader contribution)
- 22 Incorrect ground handling procedures

Aviation Safety Digest is prepared by the Bureau of Air Safety Investigation in pursuance of Regulation 283 of the Air Navigation Regulations and is published by the Australian Government Publishing Service. It is distributed free of charge to Australian licence holders (except student pilots), registered aircraft owners and certain other persons and organisations having an operational interest in Australian civil aviation.

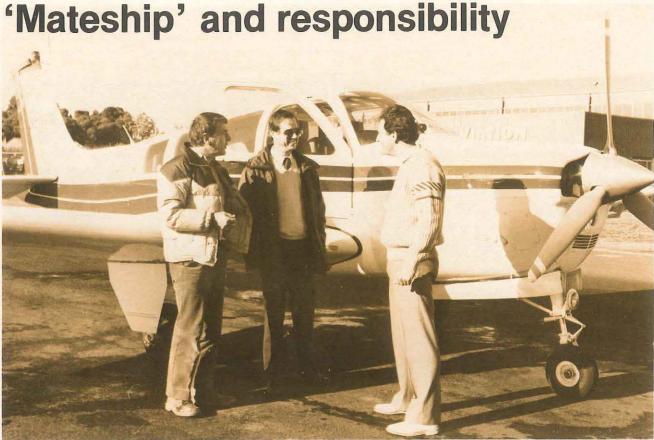
Unless otherwise noted, articles in the publication are based on Australian accidents or incidents.

Readers on the free list experiencing problems with distribution or wishing to notify a change of address should write to:

The Publications Distribution Officer Department of Aviation P.O. Box 1839Q, Melbourne, Vic. 3001

Aviation Safety Digest is also available on subscription from the Australian Government Publishing Service. Inquiries and notifications of change of address should be directed to:

Mail Order Sales Australian Government Publishing Service G.P.O. Box 84, Canberra, A.C.T. 2601


Subscriptions may also be lodged at AGPS Bookshops in the capital cities.

Reader contributions and correspondence on articles should be addressed to:

The Director Bureau of Air Safety Investigation PO Box 367 Canberra City, A.C.T. 2601

© Commonwealth of Australia 1985 ISSN 0045-1207 R84/403(1) Cat. No. 85 1045 X

Printed by Finepress Offset Printing Pty Ltd 49 Railway St, Yennora, N.S.W. 2161

One of the best-publicised characteristics of Australian social relationships is that of 'mateship'. Among the elements which seem to make up mateship are admirable qualities such as friendship, loyalty, dependability and so on. Central to this ethos is the notion of 'sticking by your mates'. However, the findings of aircraft accident investigations sometimes indicate that apparently mistaken notions of mateship may place lives and property at risk. Where such mistaken notions exist, the question which must always be answered is: are we really doing a mate a favour by concealing his potentially fatal behaviour, both from him and those in a position to do something about that behaviour? Perhaps nowhere does this question have more relevance than in aviation. Consider the following occurrence.

'Heavy landing'

A Chief Flying Instructor of an aero club was notified that one of his aircraft had been damaged in a heavy landing. At the time of the occurrence it was being flown by a PPL holder, who was training for his CPL; while two other CPL trainees were in the aircraft as passengers.

Following an inspection of the aircraft the CFI held some doubts about the report submitted by the pilot-incommand so he requested an official investigation into the occurrence. He also continued to make enquiries himself.

Inspection of the aircraft showed that damage consisted of slightly bent propeller tips, cracks and sheared rivets in the nose wheel doors, a damaged lower wing-root cover, slight damage to the engine cowling caused by contact with the flywheel, and a number of spinner attachment bolts either loose or missing.

It was considered that most of this damage could have been caused by a heavy landing. This assessment did

2 / Aviation Safety Digest 126

The cover features a highly commended entry in the Digest's recent

Canberra, it depicts the relationship between aircrews and air traffic

photographic competition. Submitted by Mr Han van Loon of

Front cover

controllers

not, however, apply to the missing or loose spinner bolts, which, it was considered, could only have vibrated loose over a period of time, i.e., it seemed that the aircraft must have been flown for some period after the initial impact which loosened the bolts. Yet according to the pilot this was not the case.

After the inspection it was not at first possible to contact the pilot to check the facts. In the interim, the two passengers were telephoned and they both supported the pilot's original statement.

Later, however, after further discussion, the passengers recounted a different sequence of events.

Water impact

The pilot had arranged to take the two passengers on an area familiarisation flight. After some general flying over land, the aircraft was descended towards a nearby dam. Weather conditions were fine: the surface of the water was glassy, there were no ripples and the surrounding trees could be seen reflected in the water.

The aircraft passed over the dam wall at about 50-100 feet AGL, still descending, and eventually levelled out over the water at about 10 feet. It passed under a set of power lines which were marked with large, coloured discs.

One of the passengers later said that he had the impression that the pilot may have been testing them to see how low he could go before they became scared. The pilot told the passengers that he had 'trimmed the aircraft nose-up to prevent the nose from dropping should he let the controls go'. One of the passengers asked if the operation was safe, to which the pilot replied that everything was under control and that he had done this sort of flying before.

After about 2 minutes flight at 10 feet above the dam,

the aircraft suddenly struck the water. The windscreen was covered with spray and the engine surged.

Fortunately for its occupants the aircraft 'ricocheted' back into the air; the pilot was able to regain control and fly away. A climb to 3000 feet was made and general handling checks carried out.

The pilot then advised his passengers that they would land to inspect the aircraft, not at the aero club's aerodrome, but instead at a nearby ALA. Apparently the landing there was very smooth but, after looking at the damage caused by the water impact, the pilot told the others that he would explain to the aero club that it had been caused by a heavy landing at the ALA. His passengers agreed to support this story.

After the investigation started, the pilot eventually came forward and confirmed that there had been no heavy landing, and that in fact the aircraft had impacted the waters of the dam during illegal low flying.

Discussion

Before addressing the 'mateship' aspects arising from this event, it is first worth noting that the pilot had been briefed previously on the difficulties associated with judging height over calm water, while he had also been counselled by his supervisors in relation to another

incidence of illegal low flying in the same area.

Turning to the thrust of this article, it is essential here to get completely away from the misguided - albeit well meaning - notions of 'dobbing in' one's mate.

The plain fact in this occurrence is that it was sheer good fortune that the three occupants of the aircraft were not killed. All of those associated with the accident had an obligation - to themselves, to anyone who might fly in similar circumstances, and to the pilot concerned - to try to prevent a repetition which might not end so fortuitously.

Rather than doing the pilot a favour by initially helping him conceal the truth, his passengers were doing him a great disservice. How would the passengers have felt if, through a repetition of this occurrence, the pilot had killed himself, and perhaps others. Worse still, how would they have felt if the pilot had killed other passengers and survived himself?

Surely the notion of not 'dobbing in one's mate' involves protecting your mates. Given the nature of the occurrence described in this article, the best way to protect the pilot and any subsequent passengers would have been to do everything possible to ensure that this pilot never repeated such a stunt again.

There is no question of 'dobbing' or protecting one's mates, but there is unarguably one of safety, defined here in terms of prevention and responsibility •

This photograph of a Lear 35 at Tennant Creek is by courtesy of Mr Brenton Hollitt of Adelaide.

In a recent incident involving a Lear 35 aircraft the cabin filled with fog following venting of nitrogen from a container of liquid nitrogen being carried as cargo. The pilot returned to the departure aerodrome where the container was off-loaded.

The consignment had been properly prepared and handled as dangerous goods in accordance with the requirements of ANO 33.

The release of gas from containers of deeply refrigerated liquefied (non-toxic) gases is normal. The containers are either continuously vented or protected against pressure build-up by a pressure release valve.

The venting of the very cold gas will often form visible condensation in the atmosphere around the container and may impair visibility in the cabin of a small aircraft.

The problem may be rectified by increasing cabin temperature; however, if the pilot cannot positively attribute the cause to the foregoing phenomenon he should take appropriate emergency action.

Wherever possible, deeply refrigerated liquefied gases should be carried in cargo holds where fog formation is of no consequence

Ultra-lights and low-level turbulence

An article entitled 'Ultra-lights aren't easy' which appeared in Aviation Safety Digest No. 124 pointed out that the handling characteristics of ultra-light aircraft can vary significantly from those of GA aircraft. Factors mentioned included the following:

- ultra-lights tend to have a narrower performance envelope;
- they have far less power to weight and far more drag; • because they have less inertia than GA aircraft, when the throttle is closed or the engine stopped, they lose
- airspeed more quickly; and

• as they fly at much lower speeds, they are far more susceptible to the effects of wind and terrain. The latter factor appears to have played a part in a fatal accident involving a Pterodactyl.

The accident

A series of demonstration flights had been arranged by the aircraft's owner. The weather was clear and sunny, although, while the wind was generally calm, gusts of 5 knots were blowing from widely varying directions. Thermal activity was also believed to have been affecting the operating area. The pilot had about 200 hours on the Pterodactyl but was unfamiliar with flight in thermalling conditions.

Takeoff was commenced in a north-easterly direction and the ground roll was normal. However, when the aircraft had reached a height of about 10 feet it entered what appeared to be an involuntary turn to the left. The turn continued through about 90 degrees. At the same

time the climb angle - which is normally about 20 degrees – became much steeper than normal: one witness said that as the aircraft was flying away from him, he could see the canard above the wing plan form. The engine was reported as sounding normal.

The Pterodactyl struck the ground in a 40 degree nose-down attitude. Witnesses reported that it appeared to be recovering from the dive as it impacted.

encountered a strong thermal after takeoff, which induced the abnormal climb performance. The wing drop and auto-rotation probably occurred when the aircraft exited the thermal. There then was insufficient height for the pilot to recover from the near-vertical, post-stall dive. Comment Because ultra-lights operate at such slow speeds, the

When the aircraft was at an estimated height of 100 feet its left wing dropped, it turned left through about 180 degrees, and its nose fell until it was in a nearvertical dive.

There was no evidence of mechanical failure or defect. Initial investigation suggests that the aircraft

effects of wind and/or terrain - even a 5 knot gust or a single tree - can produce alarming control problems for the unwary. In this unfortunate accident it seems probable that the attitude and airspeed changes induced by a thermal caught the pilot unawares, eventually resulting in a dire situation from which he was unable to recover in time. (continued on page 6)

Flying Vyse, and the pilot's handbook

Aviation Safety Digest 125 contained an article titled 'Safe operation of light twins'. A reader has suggested that, while he found the article generally very informative and useful, it did not go far enough in its discussion on flying Vyse - the airspeed that will give the best single-engine rate-of-climb (or the slowest loss of altitude). His point was that for many light twins, Vyse can vary significantly with All Up Weight (AUW), and that simply to fly the blue radial speed on the airspeed indicator regardless of AUW may not produce the optimum performance. The point is a good one.

A review of a number of representative Pilot's Operating Handbooks (POH) is instructive in illustrating this matter.

Many pilots complete their initial twin endorsement on the Piper PA44 Seminole. The POH for the 180T model stipulates in Section 2 (Limitations) that the 'one engine inoperative best climb speed' is 88 KIAS; no qualifications are given. This is confirmed in Section 5 (Performance) in the one engine inoperative climb performance graph, where 88 KIAS is recommended regardless of AUW. For this aircraft, then, the manufacturer has determined that the operational simplicity of a single 'blue line' speed outweighs any minimal performance increase that varying Vyse might achieve.

Similar operational advice is given in the Beechcraft Baron 58/58A POH. Section 2 nominates a Vyse without any gualifications, and Section 5 advises that the one engine inoperative climb speed is 101 knots for all weights. Again, this represents the manufacturer's best assessment of operational performance, taking all variables into account.

Some aircraft, however, do derive significant performance benefits if the pilot flies a Vyse appropriate to AUW. The Cessna 310 is a good example.

Section 2 of the POH for the 310R defines a Vyse of

106 KIAS '... at sea level standard day conditions and 5500 pounds weight'. The POH is perhaps slightly ambiguous here, for while that definition implies that Vyse will vary, Section 2 also links Vyse to the blue radial marked on the airspeed indicator at 106 knots. Reference to Section 5 resolves any doubts. The rateof-climb one engine inoperative data includes a table which stipulates that at sea level, Vyse should be varied from 98 knots at 4700 pounds AUW to 106 knots at 5500 pounds. This is a significant difference in airspeed, and it can give an important performance gain.

An even more graphic example is provided by the Cessna 402B, in which the Vyse range at sea level can vary 19 knots with AUW.

Summary

Vyse varies with weight for all multi-engine aeroplanes, being highest at the maximum take-off weight (MTOW) and lower for lower weights. For some light twins the range of Vyse is small and manufacturers may publish only the Vyse appropriate to the MTOW. It is this speed which is shown on the airspeed indicator at the blue radial.

The increase in performance which accompanies a reduction in aircraft weight greatly exceeds the penalty which results from flying at the blue radial speed rather than the correct Vyse. When flying at the blue radial speed the performance will never be less than the performance available at the MTOW.

Where the Pilot's Operating Handbook contains performance data on Vyse, your pre-flight planning should include a determination of Vyse appropriate to your take-off weight. In the event of an engine failure, you should maintain this predetermined Vyse rather than the blue radial speed. If only one value of Vyse is published in the POH for your aeroplane, maintain the blue radial speed

Ultra-lights and low-level turbulence (continued).

Not only do ultra-lights fly at comparatively low indicated airspeeds but, also, in many cases, a narrow band exists between cruise and stall speeds: something in the order of 20 knots is not uncommon. Given that stall speed effectively doubles in a 60-degree-bank level turn, pilots must exercise considerable caution when operating in gusty conditions in which airspeed fluctuations and uncommanded bank inputs are likely. Furthermore, any problems which arise in such conditions are likely to be compounded by the fact that ultra-lights operate at low altitudes.

Conclusion

- There are two main causes of low-level turbulence:
- thermal movement of air, and
- mechanical disturbance of airflow.
- A detailed article on low-level turbulence appeared in Aviation Safety Digest 109.

Regardless of his aircraft type - wide-bodied jet or homebuilt - a pilot needs to understand the causes of low-level turbulence and its possible effects. This knowledge is especially important for ultra-light pilots

Assessing a forecast

A Cherokee Six 300 took off from Birdsville in the early afternoon, en route for Alice Springs. The flight plan for the route had been submitted that morning at Broken Hill, using meteorological data issued there.

Initially the aircraft climbed VFR to its planned altitude of 6500 feet and then took up a heading of 282 °M. Tracking was verified as accurate when the first reporting point selected by the pilot, Goonamillera Water Hole, was overflown some 36 miles outbound. A standard positon report was made, with the elapsed time to the next position at Geosurvey Hill amounting to 65 minutes.

About 30 minutes after passing Goonamillera Water Hole the pilot decided he would have to descend to maintain VMC. Accordingly the PA32 was descended to 3500 feet, which placed it below the cloud layer. At that altitude the pilot found visibility poor as the sun was creating a diffused glare through the clouds, while the terrain was darkened by the cloud cover. Map reading features on the Simpson Desert became difficult to discern, so the pilot decided to maintain heading on 282°M.

When the ETA for the next position report eventually arrived the pilot was disturbed by the fact that the terrain did not match that depicted on his chart.

Contact was made with Alice Springs Flight Service Unit and, after some discussion, the pilot advised that he was unsure of his position. An Uncertainty Phase was declared and actions taken by the FSU to assist the pilot with his navigation.

Some time later the PA32's ADF gave a steady bearing on Alice Springs NDB and the pilot was able to track to the aerodrome without further difficulty.

* * *

The relevant route Area Meteorological Forecast showed that there was a surface trough situated close to the Birdsville-Alice Springs track. At latitude 25° South which lies roughly along the planned track - the wind direction was predicted to change through about 120 degrees at the 7000 foot altitude, depending on whether one's position was north or south of the trough.

The Cherokee pilot had completed his flight plan using the forecast 7000 foot wind velocity for south of 25 degrees South, 250/15. The groundspeed from this wind

23012 ADDNYM AMD ARFOR 0300 TO 1700 AREA 85 BASED ON SITUATION FOR ADDN FIR AT 222300 MET SITUATION: SFC TROUGH NEAR JVS/WIS MOVING E AT 20 KTS. RIDGING EXTEND INTO S AMD WIND 3000 14015 5000 N 25S 12020 S 25S 27015 7000 N 25S 13020

Reprinted here is a copy of the Amended Area Forecast for Area 85, based on the situation for the Darwin FIR at 222300, and valid from 0300Z to 1700. Note that the wind at 3000 feet is forecast as being 140/15, while at 7000 feet and North of 25° South it is 130/20, but South of 25° S (the wind used by the pilot in planning) it is 250/15.

gave a total elapsed time interval to Alice Springs of 188 minutes.

However, once the aircraft was descended to 3500 feet it was affected by a markedly different wind velocity -140/15 — than that on which the flight plan had been based. The pilot did not allow for this.

With a wind of 140/15 instead of 250/15, the aircraft's groundspeed would have increased from 108 knots to about 138 knots, and the elapsed time interval Birdsville-Alice Springs would have been shortened by about 36 minutes. This explained the navigational error which became apparent at ETA Geosurvey Hill.

Comment

Navigating for long periods over relatively featureless terrain can be a demanding exercise, invariably requiring meticulous preflight preparation. In these circumstances, attention to the weather must be even more thorough than usual. While weather forecasts obviously must be tempered by inflight observations, a sound understanding of the total meteorological situation - not just selected items from it - is essential. Using this particular incident as an illustration, the presence of the trough near the planned route should have been a factor to be considered by the pilot when a change to his flight planned altitude became necessary. Thus, while it may be unrealistic - given his workload at the time - to expect the pilot to have referred back to the forecast while he was descending, an awareness of the overall weather conditions should have alerted him to the possible consequences for his flight planning of the surface trough.

As it was, during the descent the wind velocity affecting the PA32 changed from a headwind to a tailwind. Although this change had been forecast it was not used by the pilot and, when allied to the difficult visibility, it eventually caused him to become unsure of his position.

Finally, it should be said that the pilot did a good job in resolving his predicament by notifying the FSU of his problem and seeking assistance in time, i.e., while factors such as fuel and daylight remaining were still in his favour

S 25S 25015 10000 28020 PS07 14000 28025 MS02 18500 27030 MS10

Effecting the transition from instrument to visual flight can be a demanding exercise, involving as it does a sudden change of one's visual perceptions and the need for rapid re-orientation. These demands are likely to be most pronounced during conditions of reduced visibility and/or marginal weather. Regardless of the circumstances, changing from instrument to visual flight is a procedure which requires concentration, discipline and adherence to the clearly defined criteria.

In preparation for a charter flight planned for the following day, a CPL holder with a Class One Instrument Rating was ferrying a Beechcraft Duchess to the departure aerodrome. The pilot who was to carry out the actual charter flight was on board the Duchess as a passenger, but was assisting the pilot-in-command with radio transmissions.

Before taking off on this ferry flight — which took place at night — the pilot had been given an actual weather report for his destination which indicated that conditions were below minima. This information was confirmed by a report that preceding traffic had been unable to land at the aerodrome following NDB approaches, and had diverted. The cloud base was reported to be 500 feet AGL, about 500 feet below the NDB minimum.

On arrival an NDB letdown was carried out from which, according to the pilot, he became visual right on the minimum altitude of 3100 feet.

Transitioning to visual flight, the pilot joined crosswind for his selected runway and descended to 2700 feet (aerodrome elevation was close to 2100 feet). On downwind he lowered the undercarriage and airspeed decreased to about 100 knots. He then found that he had to turn slightly to his left to avoid some cloud: this in turn put him too close to the runway so he continually had to look over his left shoulder to keep the runway in sight.

A base turn was commenced and 15 degrees of flap selected. It seems that at this stage the pilot was experiencing considerable difficulty in retaining visual contact with the runway, for he later stated that during the base turn he was not sure what the airspeed was or whether the Duchess was descending.

Eventually accepting that his attempted approach was not complying with the criteria — indeed he later stated that he lost sight of the runway completely — the pilot decided to make a missed approach. He applied full power, raised the aircraft's nose and retracted its landing gear and flap.

While the gear was still retracting the aircraft struck power lines and then a roadway, and came to rest upright in a built-up area after a ground slide of 82 metres.

When investigators examined the accident site, it was found that the aircraft was actually below the level of the aerodrome when it impacted the power lines - it was little wonder, then, that the pilot had been unable to see the runway lights.

Upper left: approximate flight path and power line impact.

Lower left: The runway threshold is 600 metres away in the direction the aircraft is pointing. The aircraft came to rest 15 degrees off the runway heading.

Analysis

Relevant factors identified during the investigation included the following:

- poor weather;
- pilot continued with the circuit in unsuitable weather conditions;
- loss of visual contact with the runway;
- failure to carry out a missed approach when conditions clearly dictated the need to do so;
- descent below a safe height.

Discussion

The standards and procedures for the kind of approach attempted by the Duchess pilot are listed in the Instrument Approach and Landing Charts section of AIP. Obviously instrument-rated pilots must know all of them thoroughly and adhere to their detail. Several of the more salient points are the need to:

- establish visual reference within the prescribed circling area at an altitude not below the minimum altitude and by reference to the specified aid or aids;
 maintain visual reference; and
- achieve an obstacle clearance of at least 400 feet by day and 600 feet by night until the aircraft is aligned with the runway, strip or landing direction in use.

Conclusion

To reiterate, making the transition from instrument to visual flight demands a rapid change of orientation and perception. Strict adherence to established criteria and practices is essential during this procedure.

Perhaps attention should also be drawn to the lack of action, in the form of monitoring progress, from the passenger/pilot, who was more experienced than the pilot-in-command. Accepting that he was just a passenger, it nevertheless does not seem unreasonable to suggest that in view of his relative degree of experience and the difficult conditions, he might have closely monitored the approach, not so that he could interfere—this could be counterproductive and even dangerous—but rather to draw timely attention to any matters of concern. Apparently this was not done •

Unauthorised modification

Positive and specific procedures have been established in Australia for the incorporation of modifications into aircraft. On occasions it may seem tempting to bypass those procedures, when a proposed mod. seems relatively straightforward. There can, however, be many factors to consider which are not immediately apparent but which, if ignored, can create hazards. Unauthorised work carried out on a Piper PA 32 provided a case in point.

*

A PA32 arrived at a remote locality after a long flight. Several passengers disembarked and the pilot left shortly afterwards for another destination.

After the Cherokee had departed one of the disembarked passengers mentioned to a bystander that, in the course of the flight, a number of the passengers had developed headaches and the pilot had been sick several times. The bystander recognised those symptoms as possibly being attributable to carbon monoxide poisoning, and contacted the Bureau of Air Safety Investigation. An investigation was initiated.

Findings

During a subsequent flight test carrying an airworthiness surveyor with test equipment, excessive carbon monoxide was indeed detected in the aircraft's cabin: in some positions it exceeded the allowable level by a factor of

five. The gas was found to be entering the cabin through the overhead duct assembly, which was connected to a louvre scoop - which had been fitted without approval - in the area where the air conditioning condensor unit should have been. This louvre scoop was drawing contaminated air into the aircraft from the fuselage under-surface. The end result of this unauthorised modification was, in the words of the safety investigators, 'a massive carbon monoxide leak into the cockpit of the aircraft'. To make matters worse, the poisonous gas was entering the aircraft through vent outlets located near the crews' and passengers' heads.

Conclusion

This incident graphically illustrates the potential danger of unauthorised modifications. One of the big traps is that seemingly harmless changes to an aircraft's configuration can in fact have insidious and far-reaching consequences. Part of the rationale for the formal modification process is to give specialists the opportunity to consider thoroughly all of the possible effects for the safe flight operations of a proposed mod.

Finally, concerning inflight procedures, the action of the pilot in immediately flying another trip after most of those on board had been sick for no apparent reason must be questioned

In brief

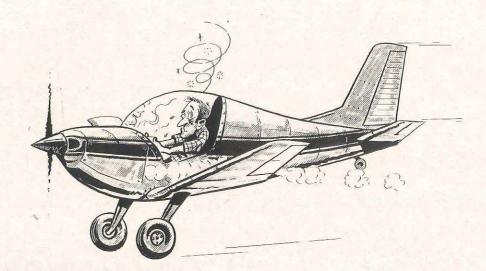
It has been suggested that pilots working under pressure may misuse some types of navigation plotters. For example, the IPR-13 ICAO Plotter, which is made from clear plastic and is used on both sides, has a scale for measuring 1:250 000, 1:500 000 and 1:1 000 000 navigation charts on one side in nautical miles; and the same provision for measuring distances in kilometres on the other side.

Because the instructions for using the plotter are presented on the 'kilometres' side, the possibility exists that a pilot who was not as familiar with the plotter as he should be, and under a high workload, might refer to those instructions and then forget to turn the plotter over before making a distance measurement: i.e., he would measure in kilometres instead of nautical miles.

Familiarity with your equipment, and a quick mental double-check of all calculations are the best safeguards against such possible pitfalls.

An item in the Canada Aviation Safety Letter illustrated the dangers of inadequate maintenance on pilot's seats:

A Cessna 206 was making its first flight after maintenance. With 20 degrees of flap selected, the pilot rotated at about 50 knots. Just after liftoff his seat slipped backwards, leaving him beyond the reach of the rudder pedals. As he struggled to keep control the aircraft climbed to 100 feet, veered left and, with full power on, struck the ground.


Examination of the seat assembly showed that all four rollers were extremely worn and should have been replaced prior to the accident. The seat rail guides were also worn and slightly expanded. This allowed the seat to move, even though it was locked in by an adjustment pin. (This particular model had only one adjustment pin, while some models have two.) The combination of worn seat rollers with acceleration forces in the nose-up rotation attitude allowed the seat back-top to move rearward, lifted the two front rollers off the seat rail, and pulled the adjustment pin out of the locking hole, allowing the seat to slide rearward.

It is a good idea to have a look at the condition of the seat assembly during your walkaround.

Also, if possible, lock the seat in the desired setting for flight and check the position of the pins visually.

A well-maintained seat assembly and properly locked pins will go a long way towards ensuring that you and your aircraft leave the ground simultaneously •

Carbon monoxide poisoning

Carbon monoxide is the product of the incomplete combustion of carbonaceous material. It is found in varying amounts in the smoke and fumes from burning aircraft engine fuels and lubricants. The gas itself is colourless, odourless, and tasteless but is usually mixed with other gases and fumes which can be detected by sight or smell. It is lighter than air and so tends to be around the heads of persons in confined spaces such as light aircraft cockpits.

When carbon monoxide is breathed it combines with haemoglobin, the oxygen-carrying agent of the blood. The affinity of haemoglobin for carbon monoxide is over 250 times greater than for oxygen. The product of carbon monoxide and haemoglobin, carboxyhaemoglobin, has a two-fold effect. First, it

reduces the oxygen-carrying capacity of the blood and, second, it reduces the process by which oxygen is transferred from the blood to body tissues. Not only is the oxygen carriage diminished but also the reduced amount of oxygen cannot be fully utilised. The first organ to be affected by the shortage of oxygen is, as in hypoxia, the brain. A person's ability to perceive, store and process information and then make decisions is impaired. Exposure to small amounts of carbon monoxide over a period of hours will reduce performance If you smell exhaust odours or begin to feel any of the and is as dangerous as a short exposure to a high concentration of carbon monoxide. Carboxyhaemoglobin slowly reverts to haemoglobin on breathing fresh air free of carbon monoxide but it may take 2-5 hours to reduce the carbon haemoglobin level by half (half life).

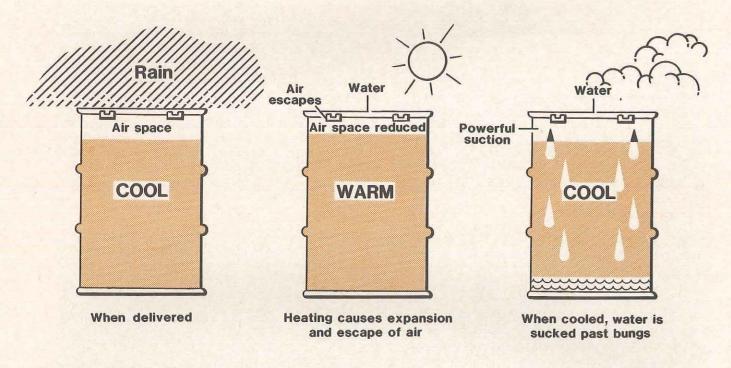
The effects of carbon monoxide poisoning increase with altitude. As altitude increases, air pressure decreases and the body has difficulty getting enough oxygen; add carbon monoxide which further deprives the body of oxygen, and the situation can become critical. Inhalation of tobacco smoke also introduces carbon monoxide into the body in significant quantities. It has been suggested that the smoking of one cigarette at night at sea level has the same effect on night vision as being at 4000 ft breathing air. There is a noticeable reduction in night visual acuity and the inference is surely obvious.

Many light aircraft cabins are warmed by air that has been circulated around the engine exhaust pipes. A

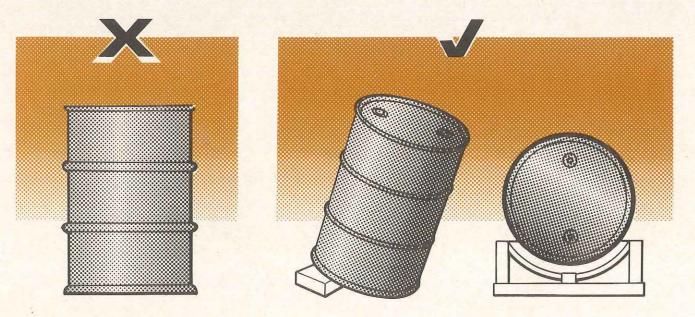
defect in the exhaust pipes or cabin heating system may allow carbon monoxide to enter the cockpit or cabin. The danger is greatest during the winter months when the temperature is such that use of the cabin heating system becomes necessary and windows and vents are closed. But there is danger at other times too, for carbon monoxide may enter the cabin through openings in the firewall and around fairings in the area of the exhaust system.

Symptoms

Early symptoms of carbon monoxide poisoning are feelings of sluggishness, being too warm, and tightness across the forehead. The early symptoms may be followed by more intense feelings such as headache, throbbing or pressure in the temples and ringing in the ears. These in turn may be followed by severe headache, general weakness, dizziness and gradual dimming of vision. Large accumulations of carbon monoxide in the body result in loss of muscular power, vomiting, convulsions and coma. Finally, there is a gradual weakening of the pulse, a slowing of the respiratory rate, and then death.


What to do about exhaust odours and symptoms

symptoms previously mentioned, you should immediately assume carbon monoxide is present and take the following precautions:


- Immediately shut off the cabin air heater and close any other opening that might convey the engine compartment air to the cabin.
- Open a fresh air source immediately.
- Avoid smoking.
- Inhale 100 per cent oxygen if available.
- If you are flying, land at the first opportunity and ensure that any effects from carbon monoxide are gone before further flight.
- Determine that carbon monoxide is not being allowed to enter the cabin because of a defective exhaust, unsealed opening between engine compartment and cabin, or any other factor. It may be wise to consult a LAME on this matter, as the source of any leak may
- not be evident to a pilot

Outside storage of fuel & oil drums-**Stop Water Contamination**

If you must store fuel and oil drums outside, do not store them upright. Even though the bungs are drawn tightly enough to prevent fluid leakage, they still are not airtight. Rainwater that collects inside the rim of drums stored vertically on end can be sucked past the bung into the drum when cooler temperatures cause contraction of the internal air and fluid. This water now contaminates the fluid and also may, in time, form rust under the drum lid which can flake off and add a particulate contamination problem.

To prevent this situation store drums so that rainwater cannot collect and cover the bungs.

12 / Aviation Safety Digest 126

Aircraft accident reports **SECOND QUARTER 1985** The following information has been extracted from accident data files maintained by the Bureau of Air Safety Investigation. The intent of publishing these reports is to make available information on Australian aircraft accidents from which the reader can gain an awareness of the circumstances and conditions which led to the occurrence. At the time of publication many of the accidents are still under investigation and the information contained in those reports must be considered as preliminary in nature and possibly subject to amendment when the investigation is finalised. Readers should note that the information is provided to promote aviation safety - in no case is it intended to imply blame or liability. Note 1: All dates and times are local Note 2: Injury classification abbreviations O = Others N = NilM = Minor e.g. C1S, P2M means 1 crew member received serious injury and 2 passengers received minor injuries Imbei 1M.1N aining to land, the pilot raised end of the runway. During the

C = Crew	P = Passengers
F = Fatal	S = Serious

Date Time	Aircraft type & registration Location	Kind of flying Departure point/Destination	Injuries Record Number
the gear and	flap but the aircraft did not continue	Supplementary Airlines Pt. Macquarie NSW/Coffs Harbour NSW t experienced a loss of power. As there was insuffic to climb. The pilot decided to land the aircraft straig nd the aircraft ran through a fence before coming	ht ahead off the end of the runway. During the
12 Apr 1715 During the p aerodrome.		Aerial Agriculture Atherton Qld/Atherton Qld ay run, the right wing struck a tree. The aircraft wa	C1N 8511017 as landed without further damage at a nearby
14 Apr 1005 During the la the aircraft s	Cessna 404 VH-LAD Moomba SA 65NW anding roll the aircraft suddenly veere struck the strip surface.	Charter – passenger operations Adelaide SA/Lake Coonamooranie ed to the left. The pilot took corrective action but the	C1N,P8N 8541008 e nose gear collapsed and the nose section o
landing the r	Hughes 269C VH-PHK Mt Hope Qld ported that just after lift off the engine main rotor blades struck a sapling. The the main rotors noticed.	Non commercial – aerial application/survey Mount Hope Qld/Scartwater Stn. Qld e seemed to lose power. She manoeuvred the helico e helicopter was then repositioned to another landing	C1N,P1N 8511018 opter to a suitable landing area, but during the g site where the engine was shutdown and the
		Commercial – aerial mustering No. 6 Bore Balbirini Stn./No. 6 Bore Balbirini S o the mob. He brought the helicopter to a low hover r skids. The helicopter pitched forward and struck	close to the animal. The animal spun around,
The pilot app	plied power to go-around. However, ose wheel dug into the ground and th	Sport parachuting (not associated with an airsi Meredith Vic/Meredith Vic along the strip, became airborne again, then toucher after reassessing the situation, he closed the throttlive aircraft tilted forward onto the propeller and left w	8531015 d down 50 metres before the end of the strip. e and attempted to steer the aircraft through a
base, he adv	vised the company of the problem. No	Charter – cargo operations Cudal NSW/Bankstown NSW nose wheel shimmy during the landing roll. As his prose wheel shimmy was noticed on landing, howe t shimmy developed, the pilot abandoned the take	ver, the aircraft was inspected by service per-
09 May 1605 The aircraft	Beech D55 VH-KNE Dalwallinu WA was landed at the destination strip v	Charter – passenger operations Carnamah WA/Dalwallinu WA vith the gear up.	C1N,P5N 8551011
a series of tu	urns before positioning for a spray run	Non commercial – aerial application/survey Mungindi NSW/Mungindi NSW or the pilot on the aircraft type. After loading water in a along one of the flight strips. At the end of the run to the right and subsequently struck the ground in	the aircraft pulled up steeply and began bank-
		Non commercial – business Townsville Qld/Cairns Qld rting Townsville which indicated that the weather en	C1F,P3F 8511019 route was unsuitable for visual flight. After be- the aircraft and it failed to arrive at Cairns. The

area at the time was reported as low cloud with heavy rain.

table for visual flight. After being issued with a clearance to enter Cairns control zone no further transmissions were received from the aircraft and it failed to arrive at Cairns. The wreckage of the aircraft was located in rain forest on the lower southern slopes of the south peak of the Bellenden Ker Range. The weather in the

Date Time	Aircraft Type & registration	Kind of flying Departure point/Destination	Injuries Record Number	Date Time
18 May 1505 The aircraft was to 2000 feet Si	Cessna 172F VH-DNV Curl Curl Beach cruising at 500 feet above some Sy porthy afterwards the engine lost all	Non commercial – pleasure Richmond NSW/Richmond NSW /dney area beaches. Following an ATC instruction, the power and the pilot was committed to a forced landing	C1N,P3N 8521031 e pilot applied full power in order to climb	21 Jun 1422 When the recommen
		came to rest inverted in the water. Commercial – aerial mustering	C1N.P1N	be brough coming to
1130 After the helicop attempts to stop pilot was unable	Mt House Stn. 37NW oter had been transitioned to forwa the vibration, the helicopter was all	33NW Mt House Stn. WA/33NW Mt House Stn. WA rd flight, the pilot felt a vibration through both the c owed to descend. As he then selected a climb attitud k a tree which slowed the yawing and allowed the pilot	8551012 ollective and cyclic controls. During his le the helicopter yawed to the right. The	21 Jun 1630 The aircrai area when
aircraft was und struck the wires	ershooting. Engine power was appli	Non commercial – pleasure Bankstown NSW/Goulburn NSW ercise to maintain his recent experience requirements ed but the pilot then saw power lines ahead, too late and 211 metres short of the threshold. The wires struct	to take any avoiding action. The aircraft	22 Jun 1057 After helpi crossed th almost sev
correct the yaw	he attempted to manoeuvre the helic	Commercial – aerial mustering 148E Normanton Qld/148E Normanton Qld 5 feet above the trees, the helicopter suddenly yawe copter to a clear area. The helicopter impacted the gro I the teeth were missing from the rear coupling of th	ound in a level attitude, heading rearward	24 Jun 0955 The stude throttle to degrees b
29 May 0930 The helicopter w the resulting imb landing on its ric	alance caused the other main rotor	Commercial – aerial mustering Ivanhoe Station WA/Ivanhoe Station WA when one main rotor blade grip failed. The main rotor blade and transmission to be torn from the helicopte	C1F,C1S 8551013 blade separated from the helicopter and er. The fuselage then fell to the ground,	27 Jun 0930 The pilot s and the ai
30 May 1030 The pilot reporte	Cessna 182H VH-PLF Roma Qld d that he had made a good approacl	Instructional – solo (supervised) Dalby Qld/Roma Qld n, but had flared high. The aircraft landed heavily on th s discovered after the aircraft had been shut down ir	C1N 8511022 e mainwheels then nosewheel. Buckling the parking area.	28 Jun 0951 The landin normally, t halt on the
rudder. Because	of the likelihood of striking a parked	Charter – passenger operations Hayman Island Qld/Shute Harbour Qld the right. The pilot attempted unsuccessfully to corru d aircraft he then induced a ground loop to the right a ngear had unlocked and the aircraft had settled on the	nd the aircraft was brought to a stop. An	28 Jun 0700 Just after of fuel dru become d
climb appeared t further height wa aerodrome, cont	o be normal, however when the airc as gained. In response to queries rol of the aircraft was lost. The left	Non commercial – pleasure Bankstown NSW/Bourke NSW ght of the aircraft and had performed a thorough pre raft had reached a height of about 200 feet there was from ATC the pilot indicated that he was returning f wing dropped sharply and the aircraft entered a near rce fire broke out and consumed the wreckage.	s evidently a loss of performance and no or landing. During the turn towards the	FINAL
aircraft in a clear	area. During the landing roll the right	Aerial agriculture Gurgeena Plateau Qld/Gurgeena Plateau Qld particular direction, the aircraft struck a single wire pov it wheel struck a large rock, which was concealed in e and came to rest in a near vertical attitude.	C1N 8511024 ver line. The pilot immediately landed the long grass, and the right main gear was	Date Time Pilot Licer
09 Jun 1411 As part of a club was lower than attempted, durin	Piper 28-140 VH-MAM Wedderburn NSW competition, the pilot was required to desired and the pilot adjusted his to g which the left wing suddenly dro	Air show/air racing/air trials Wedderburn NSW/Wedderburn NSW o carry out a practice forced landing on the strip. On the racking in order to converge with the strip. A contin pped and the rate of descent increased. The pilot w le of the strip, colliding with rocks and scrub.	nuous turn from downwind to final was	03 Apr 1857 Private The aircra after the o
eight centimetres	s below the horizontal stabiliser. The aft nose up. On short final approach	Aerial agriculture Deer Vale NSW/Deer Vale NSW ator control jammed. He then noted that the horn en- load was jettisoned as the pilot prepared to land but the elevator separated from the aircraft and despite th	increasing difficulty was experienced in	clearance commenc The fligh inexperier 03 Apr 1857
	pht illuminated. The aircraft was land	Instructional – dual Armidale NSW/Armidale NSW actice single engine landing. The gear was selected d led with the gear retracted and the pilots reported that		Private The aircra after the of clearance commenc The fligh
crossed the bou		Non commercial – pleasure Adelaide SA/American Rvr. Sth. 80 knots with full flap selected. She allowed the airsp the ground heavily, nosewheel first, from about 1		inexperier 05 Apr 0645 Private
19 Jun 1•130 On return from hi	Piper 38-112 VH-UAL Bankstown NSW is third solo flight, the pilot was atter	Instructional – solo (supervised) Bankstown NSW/Bankstown NSW npting to complete a 180 degree turn in a confined ar on prior to starting the right turn. The left outer wing		The pilot of pickets on with other The aero not advise

the aircraft on the left extremity of the concrete apron prior to starting the right turn. The left outer wing section struck a vertical support for the hangar located adjacent to the apron.

ate me	Aircraft type & registration Location	Kind of Departu	flying ire point/Destination	Injuries Record Number	r
commended brought to a	airspeed and touch down was no	Prince ne pilot app t effected u	 passenger operations of Wales Is/Mer Island Qld lied power to correct the approac ntil 170 metres after the threshold ind loop. The aircraft skidded sider 	. As insufficient runway rem	nained for the aircraft to
I Jun 630 ne aircraft Ian ea where the	Piper 38-112 VH-MHO Parafield SA ded heavily and bounced. The pil damage to the nosegear assemi	Parafiel ot recovere	ional – solo (supervised) d SA/Parafield SA d the situation and made a smooth and airframe was found.	C1N 8541012 I landing. He then taxied th	e aircraft to the parking
ossed the cr	Robinson R22 VH-HBL St Paul's HS 9S herd cattle to a yard, the pilot tun eek at right angles, and impacted I the pilot's right foot.	St Paul	mmercial – aerial application/surve 's HS Qld/St Paul's HS Qld copter and accelerated away along on its right side. One of the main re	8511027 a creek. The helicopter str	ruck a powerline, which vards into the cabin and
rottle to simu	late an engine failure. The subse	Townsy n endorsem equent landi	ional –dual ville Qld/Townsville Qld ent on the aircraft type. Following ng was firm and the right wheel b evealed severe corrosion in the in	roke off. The aircraft grour	ne instructor closed the nd looped through 180
7 Jun 930 ne pilot stated nd the aircraft		Cape K	mmercial – business (eer-Weer/Musgrave Station Qld encountered a strong gust of wind.	C1N,P3N 8511029 The left wing tip and nosev	vheel struck the ground
ormally, but a	Smith 600 VH-IGV Bankstown NSW ar was selected down during the o s soon as the nosewheel contacto tre-line of the runway.	Cowra downwind le	mmercial – business NSW/Bankstown NSW g of the circuit, and the gear down ay, the gear warning horn sounded	C1N,P1N 8521041 lights were illuminated. The d and the nose-gear retract	e aircraft touched dowi ed. The aircraft slid to a
fuel drums b	Bell 47-G5 VH-SJA Burketown 100SW off at about 30 feet agl a loud ban ut it landed heavily while moving runnected after the failure of the top	Punjaul g was heard earward. Init	ercial – aerial mustering o Station Qld/Punjaub Station Qld I and the helicopter started rotating tial inspection of the helicopter reve on.	C1S,P1M 8511030 grapidly. The pilot manoeuv ealed that the tail rotor drive	rred the helicopter clea forward short shaft had
INAL REI	PORTS (The investigatio	n of the	following accidents has l	peen completed)	
ate ime ilot Licence	Aircraft type & registration Location	Age	Kind of flying Departure point/Destination Hours Total Hours on	Type Rating	Injuries Record Number
ter the other earance was ommenced the The flight has	on the same runway. The first a not available due to other traffic or le flare for landing it collided with d been poorly planned and the brid	aircraft lande that strip ar the aircraft efing conduc	cted before departure was inadequ	to Darwin it was intended t rance to turn off the runwa ue taxying along the runway	y onto a cross strip. A y. As the second aircraf
3 Apr 857	on the aircraft type and had no for Pitts S2A VH-KIT Darwin NT		Non commercial – pleasure Delissaville NT/Darwin NT	None	C1N,P1N,O1N 8541006
ter the other earance was ommenced th The flight ha	on the same runway. The first a not available due to other traffic or the flare for landing it collided with	aircraft lande that strip ar the aircraft efing condu	cted before departure was inadequ	rance to turn off the runwa ue taxying along the runway	y onto a cross strip. A y. As the second aircraf
experienced					

 05 Apr 0645
 Stod Ham Glasair SH2 VH-MVC Casino NSW
 Non commercial – pleasure Coolangatta Qld/Dubbo NSW
 C1N,P1N 8521023

 Private
 38
 200
 21
 None

 The pilot decided to make an unscheduled landing at an aerodrome enroute to check a problem with the aircraft. On touchdown he noticed steel pickets on either side of the runway and reapplied power. During the go-around the left wing tip struck a picket, the aircraft yawed and then collided with other pickets, before the aircraft was brought to a stop.

 The aerodrome had been closed for reconstruction work. White crosses were placed on the runway and adjacent to the windsock. The pilot had not advised Flight Service of his intended landing. The aircraft nose attitude on approach reduces forward visibility and the pilot did not see the white crosses on the runway. The aircraft yawed as power was applied for the overshoot.

Date Time	Aircraft type & registration	e & registration Kind of flyin Departure p		Destination	Injuries Record	
Pilot Licence		Age	Hours Total	Hours on Type	Rating	Number

06 Apr	Cessna 172N VH-PVO		Aerial mappi	ng/photography/surve	V C1M
0758	Kemp NT		Darwin NT/K	emp NT	8541007
Senior comr		25	1731	194	Instrument rating 1st class or class 1
The pilot had	d operated into the strip two week	s prior to the	accident flight, a	and saw a powerline th	hat had apparently been diverted underground.
near one en	d. After checking with his passeng	ers who were	e familiar with the	area, a landing was m	nade. On this flight a flatter approach was made

and the nose leg snagged on the powerline causing the aircraft to impact the ground in a steep nose down attitude. The 10 metre high powerline had been diverted to cross the approach area, above ground, 274 metres from the threshold.

07 Apr 1240	Robinson R22 VH-FHK Pnt Lookout Qld			ercial – pleasure t Qld/Pnt Lookout Qld		C1N,P1N 8511016
Commercial -	- helicopter	26	756	566	None	0011010
Decenice of	abadministration and the lateral and	In section of the sector of the sector	11	and the second sec		and a second sec

Because of obstructions around the intended landing area, the pilot carried out a downwind approach. As the pilot reduced the speed of the helicopter for landing it was caught by a sudden gust of wind. The helicopter sank, struck the ground and bounced before landing on the left skid which entered a depression in the ground resulting in the helicopter rolling over.

16 Apr	Cessna 172M VH-MAE		Non commercial – pleasure			C1N,P3N
1300	Hoxton NSW		Hoxton NSW/Hoxton NSW			8521025
Private		31	120	30	None	

On final for runway 16 the pilot noticed another aircraft on departure using runway 34. The climbing aircraft turned right immediately to allow sufficient clearance for the landing aircraft to continue its approach; however, the pilot elected to go around instead. During the go around the aircraft mushed onto the flight strip, broke off its nosewheel, nosed over and came to rest inverted 30 metres from the initial impact point. The aircraft entered the circuit without making inbound or circuit entry calls and because the wind was still directly across the strip, the pilot decided to use runway 16 which he had used for take-off. Two aircraft already in the circuit, but using runway 34, were not sighted until a head-on condition had developed with one of them. During the go around, with the speed at about 65 knots, the flaps were fully retracted. Prior to this departure, a dual check was completed as the pilot had not flown the Cessna 172 for 8 years.

18 Apr 1100	Cessna R182 VH-SMV Maitland NSW			cial – pleasure V/Maitland NSW	C1N 8521030
Senior comr		26	2700	100	Instrument rating 1st class or class 1
wind, a high subsequent	er than normal approach speed w	vas flown. The ounced, the pil	pilot stated that h ot moved the cor	ne closed the throttle a ntrol column forward a	of the presence of a gusting 20 knot westerly at about 50 feet agl and flared the aircraft. The ind the aircraft bounced a second time. On the the tail area of the aircraft.

18 Apr 1500	Cessna A188-A1 VH-KQA Seabird WA		Aerial agricul Seabird WA/S			C1N 8551009
Commercial	N 92	43	5675	4000	Agricultural class 1	

off run the left wheel locked. The aircraft ground looped to the left, the right gear leg collapsed and the nose section and right wing struck the ground.

During prior maintenance of the left wheel hub the inboard bearing had not been correctly reinstalled and it subsequently collapsed into the centre of the wheel assembly during the take-off run.

20 Apr Piper 32-300 VH-MAR			Non commercial – pleasure		C1N,P5N
1343	Darwin NT		Dum In Mirrie NT/Darwin NT		8541009
Commercial		19	258	100	Instrument rating class 4

After landing, the aircraft was taxied along a taxiway to the general aviation parking area. In preparation for a 90 degree turn in the taxiway the pilot moved the aircraft to the right of the taxiway. The nose wheel struck a steel gable marker, which was positioned 500 millimetres off to the right of the taxiway. As a result of the collision the nose gear collapsed.

The pilot was not concentrating sufficiently on the taxying of the aircraft, which was being operated at a high speed.

01 May 1720			Non commercial – pleasure Bunbury WA/Busselton WA			C1N,P1N 8551010
Private		52	2700	1100	None	
During the c	ircuit, the pilot and passenger wer	e discussing	fires near their p	property. The aircraft	was subsequently lar	ided with the gear up.

The gear and its warning systems were serviceable. The pilot's attention was diverted from the operation of the aircraft by the fires and the prelanding checks were not correctly completed.

03 May				enger operations	C1N
1640	Hay NSW 24ENE		Hay NSW/Griff	ith NSW	8521026
Senior comm		28	5500	350	Instrument rating 1st class or class 1
The pilot elec	ted to conduct the flight at a	very low height	above the ground.	The aircraft collided v	vith power lines, which severed the top 10

centimetres	of the rudder. Control of the aircra	ft was main	tained and a safe	landing was made at the	e intended destination.
06 May 1830 Private	Piper 34-200T VH-AOQ Kempsey NSW	41		cial – business SW/Kempsey NSW	C1N,P3N 8521027

instrument rating class The pilot reported that the aircraft was flared normally for the night landing, but it dropped suddenly and struck the runway heavily. Damage was caused to the nose gear strut. The pilot, believing he was losing control of the aircraft, carried out a go-around. During the subsequent landing, the pilot was unable to steer the aircraft which veered to the left and struck a cone marker before being brought to a stop.

The aircraft had been observed to fly a close base leg followed by a steep final approach path. The pilot had misjudged the landing flare and during the subsequent heavy landing the nose gear strut was pushed upward through the aircraft nose, disloding the windscreen and disconnecting the nose wheel steering. Unknown to the pilot, the propellers also contacted the runway and the tips of all blades had been bent.

18 May	Beech D55 VH-ILM		Non commercial – pleasure		C1N,P6N	
1305	Brampton Island		Proserpine Qld/Brampton Island		8511020	
Commerial		42	13000	1200	Instrument rating 1st class or class 1	

After the pilot selected the gear down, he observed that the single gear position indicator light indicated that the gear was down. During the landing roll, as the aircraft slowed down, the left wing tip and left propeller contacted the strip. Subsequent inspection of the aircraft revealed that the left main gear was in the up position.

The left gear uplock bracket-block had recently been repaired but the forward hole had been drilled slightly off centre. This caused the bracket to tilt rearward and the block to slip off the uplock roller face and jam against the roller retaining bolt. When the gear was selected down the gear motor drove against the jammed uplock and bent the left retract rod. This allowed the motor to complete its extension cycle and indicate a gear down condition because the indicator switches are located on the activator housing and not at each gear leg.

Pilot Licence	Aircraft type & registration Location	Age	Kind of flying Departure point/D Hours Total	estination Hours on Type	Rating
outlanding was struck the fen Although ge wind change n area of lift. The	Glasflugel Mosquito VH-GSZ Horsham Vic 36SSE baring operations, areas of sink we a small deer enclosure. The pilot i ce surrounding the enclosure. The neral soaring conditions were poor, noved through the area. On return to e proximity of the aircraft to the tops ct a straight-in approach.	nitially over aircraft yave the pilot h the ridge-	508 tered and the aircraft rshot the area and du wed through 90 degr ad elected to leave the line the pilot, who had	Vic/Dadswells Bridge 250 descended over fore ring the turn to re-pos rees before impacting ne ridge-line to condu d not detected the wir	Glider ested terrain. sition the air the ground act a sight se nd change, p
27 Jun 0630 Commercial The aircraft ha temperature w flight inspectio metres, the pil reaching from Shortly after point all forwar left and he eled and collided w The pilot had	De Hav C2 VH-AAY Walcha NSW 3NW d been parked in the open overnig as below freezing point and frost co n was carried out, but did not inclu ot taxied the aircraft along the strip the cockpit the pilot was able to cl wards the take-off was commenced d visibility was lost because of frost sted to land immediately. The left win ith a fence, before coming to rest at had no disciplined instrument flying estricted visibility. The degradation	vered the a de the rem to check the ear the left and the lig re-forming ngtip conta about 100 g experience	Walcha NSW 3NV 1200 he pilot arrived at the aircraft, except for the oval of the frost from for obstructions. Durin side of the screen. ghtly loaded aircraft b g on the windscreen. cted the ground, follo metres from the strip ce and had been unat	windscreen which has the aircraft. Because and this time the moist ecame airborne after The pilot noticed that wed by the main whe base to maintain effective	Ad Agricultu shallow fog h dad been proi the fog had ure froze or a ground rui the aircraft els. The airc ve control of
	DATES (The investigation to or replaces that previou				complete
Date Time	Aircraft type & registration Location	Age	Hours Total	Pilot Licence Hours on Type	Rating
600 metres, at at 65-70 knots before overrun	Beech A36 VH-EUM Nundroo SA reviously discussed the strip with th dafter checking the P-chart he cald with full flap selected. Ground mark ning the strip, striking an earth mo rip was measured as 408 metres lo	culated that is indicated and and ru	t 500 metres was nee I that the aircraft touch nning through a depr	eded for a landing. The hed down 195 metres ression.	e pilot stated s past the thr
landing checks circuit, but wh Inspection o	Beech 95-B55 VH-FDG Maitland NSW entered the circuit, the pilot selecte s, which included checking that the en the aircraft was on late final app f the aircraft revealed that the exte serviceable. It is probable that the	gear was roach the nsion and	down. Ground witnes gear was observed to electrical indication s	ses observed that the be up. systems were service	e gear was c able, howev
08 Oct 83	Cessna 177RG VH-IRO Kingston (SE)70NW at about 1000 feet agl the engine		504 run roughly and the r	Private 350	Instrumer oil pressure
vibration then o until he was sa become partial Lack of suffi	isfied that the selected area had a ly extended before touchdown. cient tension of a nut securing a co subsequent engine failure.	firm surfac	e. The gear was sele	a, shut down the eng cted down on very lat	ine. He dela e final, but c

ched on the engine anti-ice and the cruise was continued at flight level 290 for about 30 minutes before climbing to flight level 310, clear of cloud where anti-icing was turned off. Operating with engine anti-ice on increases the fuel consumption by 8 percent.

Injuries Record Number

C1N 8531017

n. The only area suitable for an ircraft for landing the right wing d in a level attitude

seeing flight. During this flight a persisted with efforts to find an the pilot sighting the clearing in

C1N 8521040

ural class 2 had settled over the area. The otected by a cloth sheet. A pred reduced visibility to about 50 on the windscreen, however by

un of about 250 metres. At this appeared to be banking to the craft ran off the side of the strip

of the aircraft during the take-off s and tail surfaces could not be

ted. The information is

8341012

Record Number

the pilot assessed its length as d that he crossed the threshold hreshold. It then bounced twice

8321036

ent rating class 4 e circuit he completed the predown as the aircraft joined the

ever, the mechanical indication ecks

8341031

ent rating class 4 e indications. A severe engine layed lowering the landing gear only the nose gear had time to

ap to loosen causing loss of oil

8351029 ent rating 1st class or class 1 nania. On his arrival he refuelled

obtaining a forecast of the upper o legs of the proposed flight the e headwind component for the e leg at planned level. flight level and 300 minutes ex Adelaide. pilot left a note to instruct the ffice the pilot obtained updated hat he would nominate Perth as ites, the pilot changed the flight fuel endurance of 320 minutes e less than at the higher level.

efuellers to refuel the aircraft by not carried out and as a result

Date Time	Aircraft type & registration Location	Age	Hours Total	Pilot Licence Hours on Type	Rating	Record Number

05 Dec 83	Cessna 501 VH-BNK			Senior commercial	8351029
1016	Kalgoorlie WA 10NE	57	11000	650	Instrument rating 1st class or class 1
Continued					

As the aircraft approached the mid-point of the flight the pilot became concerned that he may not have sufficient fuel to continue the flight from Kalgoorlie to the alternate, Perth. He decided to continue the flight towards Kalgoorlie and if the alternate requirement was not lifted when he was at a point along track that was 30 minutes beyond Caiguna, he would return and land at Caiguna. Shortly afterwards the alternate requirement was lifted on Kalgoorlie.

When 185 kilometres east of Kalgoorlie the pilot commenced the descent and at flight level 250 the aircraft entered cloud and the engine anti-ice was again switched on. During the descent the fuel low level warning light illuminated and the left engine surged and flamed out at 10,000 feet. The pilot unsuccessfully attempted to restart the engine. As the aircraft broke clear of cloud at 1000 feet above ground level the right engine also flamed out. The pilot made a distress call and landed the aircraft, gear up, on a fire break. After touchdown the aircraft skidded 400 metres before coming to rest.

The examination of the aircraft found that during the landing the left fuel tank had been breached, however no evidence was found of any significant fuel spillage. Approximately five litres of fuel was recovered from each of the left and right fuel tanks. The engine fuel filters and fuel lines provided only a small amount of residual fuel. The inspection of the remainder of the aircraft did not reveal any defects that could have contributed to the accident

Significant factors

The flight was inadequately planned, the aircraft had insufficient fuel capacity to complete the flight at planned levels.

The refuelling of the aircraft at Adelaide was rushed and as a result the tanks were not filled.

During the flight insufficient attention was given to fuel management. 3.

4. The engines flamed out due to fuel exhaustion.

05 Jan 84	Blanik L13 VH-GIX			Glider		8421003
1655	Leeton NSW 6N	34	15	9	None	
Afterneehing	- halahtafaha 1000 (astad	and a contra who have a	ale Alex all designs	a share and he subsure a	In all and all use The states	a second second second

After reaching a height of about 200 feet agl on a winch launch, the glider was observed to enter a shallow dive. The drogue parachute was seen to inflate above the inboard section of the left wing and then trail behind the glider with the tow wire draped over the top of the wing. The glider entered a left turn which developed into a spiral dive. Partial recovery was effected but the aircraft impacted the ground in a nose-down attitude.

The pilot was relatively inexperienced and was performing his fourth solo winch launch. During the launch the aircraft exceeded the climb speed limit and the pilot attempted to signal this fact to the winch operator by the normal method, which involves lowering the nose of the aircraft prior to yawing it from side to side. However, the pitch change used was larger than normal, unloading the tow cable and resulting in a "back release". The length of cable between the attachment ring and the drogue parachute was considerably shorter than that recommended and increased the probability of an uncommanded release of the tow cable.

24 Mar 84	Piper 28-R201 VH-FSD			Private	8421015
1930	Dubbo NSW 102SW	30	243	128	Instrument rating class 4
While cruising	at 6000 feet on a night VMC fli	ght the pilot	encountered a	heavy rain shower. Durin	g an attempted 180 degree turn the aircraft
entered a spira	I dive and in the recovery from th	is dive the air	rcraft was evide	ently overstressed. After d	iverting to Parkes the pilot flew to his planned
destination on	the following day. The damage	sustained by	the wings was	not detected until a sub	sequent daily inspection.

13 May 84	Beech 36 VH-TYZ			Commercial	8411023
1509	Beaudesert 8SW	23	439	65	Instrument rating class 4
Soon after settl	ling in the cruise at 2000 feet.	the pilot notice	d that the fuel flo	w was lower than expe	cted. He selected rich mixture but the fuel flow
					ly, accompanied by a rise in oil pressure and a

nd a further reduction in MAP. The pilot elected to return to the departure point. Engine power became inadequate for level flight and the pilot selected an emergency landing area. The aircraft came to rest after running through two barbed wire fences. The engine failed due to long term lack of lubrication to several bearings caused by the rotation of two main bearing shells which covered oil

supply galleries. The damage to the main bearing assemblies was such that the cause of bearing shell rotation could not be established.

09 Jul 84	Cessna R182 VH-UCN			Commercia	8441020
1553	Borroloola NT 33SE	36	3985	3	Instrument rating class 4
As the aircrat	ft was climbing through 8000 fee	t the engine	suffered a comple	te loss of power. A	fter unsuccessfully attempting to restore engine

power, the pilot selected a small clearing in which to land. During the landing attempt, the aircraft floated the 160 metre length of the clearing before colliding with trees

A substantial amount of foreign matter and corrosion had accumulated in the carburettor float bowl, main strainer bowl and auxiliary fuel pump. Although the fuel filters were clean the corrosion was evidence that water had been held within the system for some considerable time. It is probable that during the climb some of the foreign matter blocked the carburettor main jet.

17 Jul 84	Mooney M20F VH-CGJ			Commercial	8421032
1705	Narrabri NSW	29	2520	113	Instrument rating 1st class or class 1
					with instrument rating

The pilot was receiving a check flight as part of a biennial flight review. He was appropriately endorsed for retractable gear and constant speed propeller aircraft, but had not previously flown the Mooney type. After touchdown on the third of a series of touch-and-go landings the pilot inadvertently raised the landing gear instead of the flap. The aircraft slid to a halt on the runway.

05 Aug 84 Piper 25-235/A1	/H-BSB		Private		8431021
1543 Woodbury Tas	38	360	239	None	

The student glider pilot had carried out three previous flights during the day. Her instructor had informed her that she was at a suitable stage of training to be introduced to practice emergency procedures. After sighting her training log book, the instructor for the final flight left the glider to speak to the pilot of the tug aircraft. The instructor returned to the glider and preparations for take-off were then continued.

Witnesses observed that the tug and glider became airborne and subsequently carried out normal turns to position the aircraft on a downwind leg at about 500 feet above ground level. The tug aircraft was then seen to waggle its wings sharply three times. Almost immediately this aircraft assumed a steep nose-down attitude, its tail apparently being pulled into a vertical position by the tow rope which was still attached to the glider. The glider then also assumed a steep nose down attitude and both aircraft spun or spiralled towards the ground. The tow rope was released from both aircraft, but neither pilot regained control before impact with the ground.

The subsequent investigation did not disclose any defect or malfunction with either aircraft that might have contributed to the development of the accident.

During glider towing operations when the pilot of the tug waggles the aircraft wings it is a signal to the glider to immediately release from the tow. This "wave-off" signal would normally be given when the tug pilot detects some malfunction or when the glider is sufficiently far out of position behind the tug to affect the tug pilot's control of his aircraft.

On this occasion it was considered likely that the instructor in the glider had arranged for the tug pilot to simulate an emergency by giving a wave-off signal. However, there was no evidence to suggest that the student pilot had received a formal briefing on the actions and procedures required in the event of the emergency. The wave-off signal was observed to be given in the normal position relative to the strip for such training manoeuvres to be performed. The reason for the subsequent loss of control of both aircraft could not be determined, however it was evident that when the aircraft released the tow rope there was insufficient height remaining to permit recovery to normal flight. **Probable Significant Factors**

There was insufficient evidence available to determine the precise cause of the accident. Nevertheless, the following were considered to be probable factors in the development of the occurrence.

1. The gliding instructor and the tug pilot arranged to give the student a practice emergency.

The student was inadequately briefed on the actions required for the emergency.

When the wave-off signal was given the glider did not immediately release from the tow.

4. Control of both aircraft was lost at too low a height to permit recovery.

Date Aircraft type & registration Hours Total Time Location Age

05 Aug 84 Czech Blanik L13 VH-GGF

33 232

1543 Woodbury Tas The student glider pilot had carried out three previous flights during the day. Her instructor had informed her that she was at a suitable stage of training to be introduced to practice emergency procedures. After sighting her training log book, the instructor for the final flight left the glider to speak to the pilot of the tug aircraft. The instructor returned to the glider and preparations for take-off were then continued. Witnesses observed that the tug and glider became airborne and subsequently carried out normal turns to position the aircraft on a downwind leg

at about 500 feet above ground level. The tug aircraft was then seen to waggle its wings sharply three times. Almost immediately this aircraft assumed a steep nose-down attitude, its tail apparently being pulled into a vertical position by the tow rope which was still attached to the glider. The glider then also assumed a steep nose-down attitude and both aircraft spun or spiralled towards the ground. The tow rope was released from both aircraft, but neither pilot regained control before impact with the ground.

The subsequent investigation did not disclose any defect or malfunction with either aircraft that might have contributed to the development of the accident.

During glider towing operations when the pilot of the tug waggles the aircraft wings it is a signal to the glider to immediately release from the tow. This "wave-off" signal would normally be given when the tug pilot detects some malfunction or when the glider is sufficiently far out of position behind the tug to affect the tug pilot's control of his aircraft.

On this occasion it was considered likely that the instructor in the glider had arranged for the tug pilot to simulate an emergency by giving a waveoff signal. However, there was no evidence to suggest that the student pilot had received a formal briefing on the actions and procedures required in the event of the emergency. The wave-off signal was observed to be given in the normal position relative to the strip for such training manoeuvres to be performed. The reason for the subsequent loss of control of both aircraft could not be determined, however it was evident that when the aircraft released the tow rope there was insufficient height remaining to permit recovery to normal flight. Probable Significant Factors

There was insufficient evidence available to determine the precise cause of the accident. Nevertheless, the following were considered to be probable factors in the development of the occurrence.

The gliding instructor and the tug pilot arranged to give the student a practice emergency.

2. The student was inadequately briefed on the actions required for the emergency.

When the wave-off signal was given the glider did not immediately release from the tow.

Control of both aircraft was lost at too low a height to permit recovery.

23 Aug 84 Beech H18 VH-PDI

Instrument rating 1st class or class 1 1835 Bankstown NSW 26 897 23 The aircraft returned to its departure aerodrome after suffering a complete electrical failure. Emergency extension of the gear was completed, but during the landing roll the nose leg retracted, which resulted in the nose and propellers striking the runway.

A written checklist was not used prior to departure and the generators were evidently not switched on. The electrical panel and the generator warning lights are obscured by the control column. Emergency gear and flap extension is achieved using the same winder which is placarded "Flaps-push handle in, Gear-pull handle out". Investigation revealed that although the flaps were in the fully down position the gear was only part of the way through its extension cycle.

01 Sep 84 Piper 25-235/A1 VH-MYE

1505 28 226 Korumburra 4SSE The pilot had been engaged in glider towing operations for about four months, and had completed 108 towing flights.

During the afternoon the pilot had carried out two aerotow flights without incident. On the accident flight a normal take-off and transit to the north side of Korumburra township was made. The glider was released at a height of 2000 feet above ground level and the tug aircraft then turned and tracked towards a right base leg position for the south west landing strip at Leongatha. Not all of this flight was observed, but two witnesses noticed the aircraft descending in a spin to the right. It appeared to recover briefly, with the nose being raised above the level flight attitude, however a spin to the left then commenced. This spin continued until the aircraft disappeared from sight, but the wreckage distribution and impact marks indicated that the pilot had been able to stop the rotation in the last moments of flight. It was evident that insufficient height remained to effect a full recovery.

A detailed inspection of the wreckage did not disclose any defect or malfunction with the aircraft, its engine or systems that might have contributed to the development of the accident.

It was considered unlikely that the pilot had deliberately entered a spin on his return to the airfield. The aircraft type was not approved for spinning, and the spin characteristics of this particular two seat conversion are unknown. There was no evidence available to determine how or why the spin situation developed. It was apparent that the pilot had succeeded in partially recovering from the initial spin, however the recovery technique being employed did not prevent a spin in the opposite direction.

04 Sep 84 Piper PA38-112 VH-HAV

1037 Bankstown NSW 44 30 30 Following a period of dual instruction the pilot was authorised to carry out her second solo circuit and landing. During the landing flare the aircraft ballooned and subsequently touched down on the nosewheel. The aircraft bounced and on the next touchdown the nosewheel broke off, the nose gear leg was displaced and the aircraft slid to a halt on the runway. The pilot's previous training flight had been conducted approximately one month prior to the accident. After misjudging the landing flare, the pilot persisted with the landing attempt instead of going around.

24 Sep 84 Cessna 172M VH-WYK 1610

860 745 Instrument rating class 4 Burleigh Stn. 17N 21 After arriving at the property that morning, the pilot commenced mustering operations. The operations were conducted between 50 feet and 300 feet above ground level throughout the day and all manoeuvres performed appeared normal to ground observers. Later in the afternoon a witness reported that he observed the aircraft perform a steeper than normal climb before diving towards the ground. The

aircraft subsequently impacted the ground in a steep nose down, wings level attitude, bounced, then slid forward for 13 metres before the left wing struck a tree.

Examination of the wreckage did not reveal any defect with the aircraft that could have contributed to the accident. It is probable that the pilot was fatigued after a long day and that he inadvertently allowed the aircraft to stall at the top of the climb. Insufficient height was then available to allow a recovery to be effected.

24 Sep 84 Private Wittman W8 VH-MGO Mundinun WA 7F 56 700 450 None 1040 The aircraft touched down in a three-point attitude and after a short ground roll, became airborne over a small rise. The second touchdown was in a left wing low attitude and the propeller struck the ground. The aircraft swung to the right then the left wing struck the ground turning the aircraft to the left. It slid a short distance before coming to rest with the left gear leg collapsed. It was ascertained that during production of the aircraft, the welding of the combined engine mount and main undercarriage unit was not to the required standard. The weak welds failed during the landing roll on the unprepared strip.

Pilot Licence Hours on Type

Rating

Record Number

8431021

Glider 19

None

Commercial

8421040

8431026

Private 25

None

Student

None

Commercial

8411041

8451026

Aviation Safety Digest 126 / vii

8421045

Date Time	Aircraft type & registration	Age	Hours Total	Pilot Licence Hours on Type	Rating	Record Number	Date Time	Aircraft type & registration	Age	Hours Tota
29 Sep 84	Cessna 210-N VH-AOI Beverley WA 3W	41	250	Private 16	None	8451027	04 Dec 84 1919	Burkhart ASTIR CS VH-KYN Whitwarta SA	66	750
blanned a fligh uel tank, pow ircraft was la The aircraft 3000 feet, no nixture. Suital	st flight on the day the pilot inspect of 155 minutes duration. Appro- er was restored and a diversion manded heavily in a paddock and the had been parked on sloping grou o attempt was made to lean the model forced landing areas were over craft stalled during an attempt to p	aching the s ade to the no e nose gear and which co nixture altho erflown enror	econd last turning p earest suitable airfie leg torn off. buld account for the ugh fuel consumpti ute to the diversion	point of the flight the en id. On final approach to over-estimation of fue on was increased 24 aerodrome because th	igine stopped. The that airfield the e contents. As the per cent by runni	e pilot selected the other ngine stopped again. The e flight was conducted at ing the engine at full rich	glider and app the glider to o The crop o experiencing	g 15 metres during a winch-launc blied right rudder and aileron but the cartwheel and impact heavily on its n the edge of the 15 metre wide a difficulty learning to control the air d that they made control inputs. Co	e left wing s nose 12 strip was craft durin	entered an oat 0 metres from about 1 metre h g take-off and fo
			lide to a more suita				09 Dec 84	Czech Blanik VH-GIK		1994
Oct 84 00	Piper 25-235 VH-CCS Blayney NSW 15SW	36	3000	Commercial 400	Agricultural cl flight instructo	8421053 ass 2 with or and instrument		Monarto SA d that the flight proceeded normally touched down on the edge of the r		
aft from s e reporte engine, ho	ng operations the engine suffered triking the ground heavily. The lan d power loss had occurred during owever it was considered likely that we had exclusion the the	nding gear c a procedure at the aircraf	ollapsed and the air turn, the latter porti ft was affected by d	rcraft slid for about 50 ion of which was downy lowndraughts in the lee	hopper load but w metres before co wind. No fault was	vas unable to prevent the oming to rest. subsequently found with	struck a tree The landing the aircraft w	20 metres from the edge of the s was conducted in 4 to 8 knot cros ith the strip prior to touchdown.	trip.	
	eve had probably caught on the th	fottle lever	and pulled it toward	is the closed position.			24 Dec 84 1900	Schleicher ASW 19 VH-GWL Waikerie SA 7E	28	310
Oct 84	Beech 58 VH-DTU McIntyre's Field	22	1800	Commercial 200		8421058 ting 1st class or class1	breasting the	outlanding the pilot arranged an aer rise, the tug pilot aborted the tak orne turned left and the left wing tig	ke-off as t	rees and a fend
rmittent bra attempted he strip sur	I circuit the aircraft crossed the the ake application had little effect in sl to ground loop the aircraft. It slid rface was very slippery as a result the way along the strip. The pilot I	lowing the ai off the side of overnight	rcraft and as the pild of the strip and col rain. Misty rain was	ot considered that insuf lided with a fence befor still falling as the pilot m	ficient strip remain ore coming to res hade his approach	ned to permit a go-around t. and touched down about	glider's right Before con completed. H	wing tip contacted the ground the imencing the aerotow the pilot of e did not measure the distance av sufficient distance was available to	the fence the tug a ailable not	e before the gli aircraft had est r consult the air
	tempt beyond the point where a g				could be commer	,	24 Sep 84	Piper 25-235 VH-WGC		iany complete
lov 84	Bellanca-8-KCAB VH-UOO	07	005	Commercial	Instrument and	8421060	1900	Waikerie SA 7E butlanding the pilot arranged an aer	46 otow. The	1170 take-off was co
pilot was a around. A	Wallacia NSW approach in calm wind conditions ble to regain control of the aircraft ground loop was attempted, durin igth was about 120 metres longer	. At this time ig which the	he assessed that the right landing gear of	here was insufficient str collapsed.	ip remaining to st	ces then occurred before op the aircraft or to safely	breasting the become airbo glider's right Before con	rise, the tug pilot aborted the tak orne turned left and the left wing tip wing tip contacted the ground the mencing the aerotow the pilot of	ke-off as t o struck th n the fence f the tug a	rees and a fend be ground befor se before the gli aircraft had est
mitted land	ing weight. After the initial bounce ift was too far along the strip for the	the pilot per	sisted with the landi	ng attempt and evidentl	y did not consider	r carrying out a go-around		e did not measure the distance av sufficient distance was available to		
ov 84	Cessna U206F VH-EKJ			Private		8441025	27 Dec 84 1610	Piper PA34-200T VH-STN Adelaide SA	19	350
an to vibra fence the	Broken Hill 80S ed a low oil pressure reading and d te and backfire and it was shut dow aircraft continued for a further 28	vn. The aircr	aft touched down 1	50 metres short of the s	strip boundary fen	ice. After running through	experienced.	orted that as the aircraft descende He applied power to arrest the rate apted to take corrective action but	e of desce	ent then reduced
Inspection of sembly had ould not be of	ctured by a connecting rod. of the engine revealed that the cra been subjected to excessively hig letermined. After the engine had fi area was available.	gh temperati	ures due to a lack o	of lubrication. The cause	e of the lack of lu	brication to the assembly	aircraft. Altho single pilot w	ement completed earlier that day, ugh endorsed on a heavy transpor orkload being higher than that to w ower setting was used. The approx	t type, the hich he wa	e pilot was proje as accustomed.
Nov 84	De Hav DH 84 VH-AQU			Private		8441027	27 Dec 84 1321	Cessna 310R VH-FFA Moruya NSW	62	12500
5 refuelling	Beachport SA 10E	45 nks contami	474 nated with water.	The fuel was drained	None from the tank ar	nd clean fuel added. No		ormal circuit, the aircraft touched d		
ollowing f	was found in the subsequent che- light, the engines began to run rou aircraft bounced heavily and grou ation revealed that water had bee	ughly and th undlooped, o	e pilot decided to c collapsing the right	arry out a landing in a gear.	paddock. The sur	face of the paddock was	The pilot ha	a halt on its under-surface. d diverted so that a telephone call of ar down until immediately prior to		
sible to dr	ain the lowest point of the fuel ta f contaminated fuel and a sticking	ank while th	e aircraft is parked	. It is probable that the	e engine rough r	unning was caused by a	06 Jan 85 1245	Piper 28-R200 VH-WIN Bourke NSW	73	1305
Dec 84	Amer Air 5A VH-SZV	20	220	Private 36	None	8411055	As the pilot w to proceed to	as attempting to locate the airstrip a Bourke and land. On arrival over Bo	at his dest ourke the	ination, he notic pilot selected th
where the Id not out-	Beaudesert 40S shed the Macpherson Range the pi gap beneath the cloud was abou climb the terrain and he carried ou however the cabin area came to r	it 300 feet, it a controlle	the pilot was confro	e hills in order to stay bonted by a higher ridge.	He subsequently	y advised that the aircraft	with the gear The alternative rear luggage	tor and engine pulleys were out of a locker, out of reach of the pilot and	alignment	resulting in the c
Dec 84	Pitts S1 VH-IGZ	oor maor.		Private		8441028	wheels up lar 12 Jan 85	ding was made. Czech Blanik L13 VH-GBT		
59 the conclus	Emkaytee NT sion of an aerobatic display the pilo			700 rolling upright as the s		ing class 4	1655	Tumut NSW ual check and a short solo flight, t	34 he pilot w	12 as authorised to

aircraft descended below the desired flight path and the pilot applied power. The aircraft responded but the right gear leg caught on a power line 5 metres agl and 330 metres from the threshold. The aircraft struck the ground in a steep nose down attitude and came to rest inverted. The inverted circuit had been conducted at between 50 and 100 feet above the tops of the trees.

02 Dec 84	Piper 28-140 VH-RVL			Private	8431036
1510	Longwarry Vic	38	290	275	Instrument rating class 4
The pilot was	to conduct two spot landings	from practice	e forced land	ding approaches commend	ced at 2000 feet. On the first approach an
undershoot de	eveloped and power was used to	o complete th	e landing. Th	ne second approach was h	igh and touchdown was made about half way
down the 730	metre strip. A go-around was in	itiated but the	engine faile	d to develop significant pow	ver. The take-off was then abandoned and the
aircraft struck	a dirt bank and drain beyond the	e end of the	strin		

It is probable that carburettor icing caused the lack of engine response when the go-around was initiated. Braking was inhibited by wet grass covering the remainder of the strip available

Glider 200

Pilot Licence

Hours on Type

tacted the ground. The instructor immediately assumed control of the pat crop on the edge of the strip. The tip then dug into soft soil, causing m the take-off position and 35 metres to the left of the centreline. e high and the glider's wing span was 17.5 metres. The student was

Glider

Rating

following wing-tip contact with the ground both the instructor and the were hot and the instructor had been on duty for nearly ten and a half

Glider

4

None

The glider was lined up with the strip, but during the hold-off it drifted to strip. The landing roll continued off the runway and the starboard wing

ng the hold-off the student pilot applied excessive rudder when aligning

Other (Foreign, Military, etc.) 8441032 Unknown or not reported

commenced into wind and up a rise. The glider became airborne but on ence appeared closer than expected. The tug aircraft which had just fore the aircraft came to rest. The glider pilot released the tow but the glider impacted the ground beyond the fence.

estimated that sufficient distance was available for the take-off to be aircraft performance chart. The chart indicated that with the prevailing e the take-off.

Commercial 8441032 Instrument rating 1st class or class 1 15 commenced into wind and up a rise. The glider became airborne but on ence appeared closer than expected. The tug aircraft which had just fore the aircraft came to rest. The glider pilot released the tow but the glider impacted the ground beyond the fence.

estimated that sufficient distance was available for the take-off to be aircraft performance chart. The chart indicated that with the prevailing e the take-off.

Private

None

8441033

final approach, windshear and an increase in the rate of descent was ced the power setting to idle. The aircraft landed heavily and bounced, d heavily. The aircraft was taxied to the parking area where the damage

ght in a civil aircraft and this flight was his first solo in a multi-engined pjected into an environment beyond his level of experience, due to the ed. The approach was steeper and 30 knots faster than recommended sunset and visibility was further impaired by a dirty windscreen.

> Commercial 5000

8421074

Instrument rating 1st class or class 1 with instrument rating

ear doors open and the gear partly extended. The gear collapsed as the

decided to land well down the runway to save time taxying. He forgot to

Private

610

None

8521002

8521004

oticed some of the aircraft's electrical equipment had failed. He decided I the gear down but did not obtain any indication of the gear position. He I not attempt to use the manual override system. The aircraft was landed

he drive belt becoming detached. The handling notes were carried in the on of the emergency gear lowering system could not be remembered a

Glider

were reported by other pilots.

the occurrence to be determined.

None sed to conduct a soaring flight of not more than one hour's duration. The Following a dual check and a short solo flight, the pliot was authorised to conduct a solaring high of hor more than one hour's duration. The glider was subsequently launched from an aerotow after take-off into a light northerly wind. It was observed solaring in the vicinity of the aerodrome within an estimated height band of 3000 to 6000 feet above ground level. During the flight the wind on the ground changed to become a gusty south-westerly at about 10 to 15 knots. The shade temperature was 36 degrees celsius and localised areas of turbulence

The pilot did not return for a landing for approximately two hours, despite the pre-flight briefing. When he returned, the aircraft was positioned for a landing into the north, apparently without reference to the changed wind conditions. During final approach the glider was seen to pitch down into an almost vertical dive. It struck the ground some 200 metres before the strip threshold and came to rest inverted.

Subsequent examination of the wreckage did not reveal any defect or malfunction that might have affected the pilot's ability to safely control the aircraft. It was apparent that the glider had been in a normal wings level approach configuration immediately before the pitch-down which occurred at a height of about 100 feet above ground level. It was considered possible that the aircraft could have been affected by turbulence, or that the pilot may have suffered from heat stress and fatigue. However, insufficient evidence was available to enable the precise factors in

8441030

8441031

Record Number

Date Time	Aircraft type & registration Location	Age	Hours Total	Pilot Licence Hours on Type	Rating	Record Number	Date Time	Aircraft type & registration Location	Age	Hours Tota
14 Jan 85 0900	Cessna 180K VH-SAA Bundaberg Qld	59	2720	Commercial 24		8511002 grade 1 or 2 with	17 Feb 85 1440	Bede BD4 VH-ABD Tanunda SA 5SSW	43	370
excessive left	ding roll the aircraft started to ver rudder and considerable power an regaining control. The pilot under	nd the aircra	aft swung sharply lef	ft. The left wing and el	evator tips contacte	swing but then applied	touchdown at power, howey go-around. As The pilot wa	attending a fly-in to display his the threshold. During the final app ver, the aircraft struck the ground l a result of the ground contact the s advised of the situation by ground	proach, he heavily abo he nosewh	became aware ut 10 metres be eel was torn of
18 Jan 85 0748	Bell 206B VH-WNB Karratha WA 37N	46	6162	Commercial — h 634	None	8551002	collapsed. 18 Feb 85	Piper 28-161 VH-UMB		
hange and the	ng level flight with an external sling on a second bump was felt. The lo	ad was jetti	soned and immedial	the rear of the helicopter beg	an yaw to the right.	The pilot was unable to	1115 At the conclu	Deniliquin 22NE sion of the dual training segment	42 of the flight	3280
The pilot had his operation t	before the helicopter struck the g not flown helicopters for two year he pilot was substituted for anothe	s and althou	was unavailable. The	e load carried on this r	un was identical to le	bads previously carried,	continued to a	a very low height, and during the g d a safe landing was subsequent	go-around t	he aircraft struc
	er. The pilot elected to use the sa s release the load slid back and w						20 Feb 85 0845	Piper PA23-250 VH-JEN Palm Island Old	26	1460
Becured the er During the pr	Beech 58 VH-EZB Halls Creek WA sequence for the left engine, a lo gine and along with the passenge ior refuelling operation fuel was se ft engine was started in situ. Subs	ers, evacua een to be le	ted the aircraft. The aking onto the grou	e fire was extinguished nd beneath the left en	nder the aircraft. He I but the left wing c gine from a known I	lamaged. eak within the left wing.	The pilot state the aircraft be the subseque Upon arrival landing direct deceleration w	d that when braking was applied a came airborne, the nosewheel str nt landing at Townsville. the pilot had to orbit for 5 minutes ion which placed him presently in vas minimal. By the time a go arou g the go around, this further incre	after toucho uck a fence s to allow a n a wide b ind was initi	down, the aircra e. As a result th rain squall to pa ase position. D iated the aircraf
26 Jan 85 1302	Cessna 172N VH-WND Albury NSW		386	Commercial 132		8521006	21 Feb 85 1800	Cessna A188-A1 VH-KVK Trangie NSW 11SE	47	8112
anding the airc bieces of the n Although the imes to avoid netres along th	was fitted but on take-off for a tes raft ran through a fence and cam hissing section of the previously r engine had been ground run by th overheating the new cylinder, eng the 1900 metre runway and this wa ienced, full flap was not used for th	e to rest in eplaced ex ne engineer ine run-up a as the first f	a ditch. Two cylind haust valve were fo s it had not been te and pre-flight check ull power demand m	ler assemblies were for und within the induction sted to full power. As a were conducted wh hade on the engine sin	ound to have suffer on system. he pilot was asked lst taxying. Take-of ce its repair. At abo	ed internal damage and to limit taxiing and idling f was commenced 230 ut 250 feet agl a power	The pilot ha other edges, t the single wire 24 Sep 85 1807	the aircraft which was subsequent d been briefed on the crop to be the final run was commenced with e running from the main line into Beech 76 VH-BGY Moorabbin Vic	sprayed and the aircraft the paddoc 36	nd on the locat it flying parallel ck. 121
							and carried ou	normal touchdown directional co t a go around. The pilot advised th	ne tower the	at the left mainv
27 Jan 85 1410	Pitts S1 VH-DDS Lake Eppalock Vic	31	784	Commercial 114	Instrument ratin with flight instru	ictor	aircraft slewed The left gear	ding. Normal gear down and locked d off the side of the runway. r retracted due to insufficient over these potential problem areas has	rcentre acti	ion on the side-
steep climb and	bbatic display was being conducte stall turn. Although the display wa feet agl. Despite this low recover	as to be con	nducted not below 5	00 feet agl the aircraft	was recovered from	n the last snap roll at an	these instructi 05 Mar 85	ons was not mandatory and the a Bell 47-G3B1 VH-ANG	aircraft had	I not been mod
	quent dive he stalled the aircraft a						1220	Mt Riddock Stn. NT ing operations the pilot landed on	28	1215
he pilot was control the aircraft w	Transav PL12 VH-MLJ Deloraine Tas 8E on of spraying operations the pilot ommitted to a landing in a barley of ras at about 100 feet agl when the skid to the right after touchdown	crop. During engine faile	g the landing roll the ed and the most suita	e nosewheel was brok able area available requ	en off and the aircr uired that the landing	e failed completely and aft overturned. g be made downhill on a	these checks the refuelling a but had to ma The investig	revealed an estimated endurance area about 4 kilometres away. Wh noeuvre to avoid trees and the ai ation revealed that the aircraft was robably made on sloping ground a	of 20 minu nile enroute ircraft subs	utes, the pilot e to the refuellin equently lande le but the engin
07 Feb 85 1520	De Hav DH82-A VH-BFW Alberton Vic ght in the local area the pilot mad	49 de a long lo	905	Private 820 wards the intended la	None nding point During	8531004		Mooney M20J VH-MVO Bankstown NSW 13W as cruising at 1500 feet agl whe pilot subsequently carried out an		
emporarily forg	ot that powerlines crossed the flig own attitude about 800 metres fro	ght path. Th	e aircraft collided w				09 Mar 85	Cessna A188B-A1 VH-PLU		
8 Feb 85	Piper 25-235 VH-TOX Wilmot Tas 2S	27	1800	Commercial 1000	Agricultural alos	8531005		Gundagai NSW are being carried out under a pow the top of the rudder from the airc		
he pilot was c	onducting the last of his spraying t first run was conducted up the slop			had an uphill slope an		oups of tall trees at the	09 Mar 85	Glasflugel Mosquito VH-FQR		770
eft wing struck and the wreck The spraying encountered th	branches in one group of trees, c ge was completely gutted. was commenced in strong wind c e pilot chose to fly between the	onditions ar two stands	lost and the aircraft and the procedure tur of trees but insuffic	struck the ground hear m was executed in the cient clearance existent	vily. The fuel tank rules of the trees. W	ptured, a fire broke out hen the turbulence was of the aircraft. The pilot	arranged for an veered violent	Jondaryan Qld coaring conditions resulted in the p n aero-tow launch. During the take by to the left, became airborne for d several cracks in the mid-fusel	e-off roll the a few metr	e left wing of the
idvised that his	s workload during the day had be	en nign an	u that he did not lik	e spraying this particu	nai paudock decau	se or its slope and the	09 Mar 85	Wittman W8 VH-SLA	A GAY ANGLOW	

17 Feb 85	Piper 28-151 VH-RUZ			Private		8531011
1900	Moorabbin Vic	26	150	150	None	
The pilot was	turning into the parking area	intending to tax	hotwoon airora	ft parked in parallal rows	As the turn was	omploted the left win

The pilot was turning into the parking area, intending to taxy between aircraft parked in parallel rows. As the turn was completed the left wing tip struck the spinner of the aircraft at the start of the left hand row. This aircraft was undamaged, however the wing tip of the taxying aircraft was eted the left wing tip

pushed rearwards with consequent damage to the rear spar fuselage carry-through member. During the turn into the parking area one of the passengers interrupted the pilot's concentration by pointing out that the parking position from whence they had departed, was still vacant. The pilot did not notice that the aircraft had moved almost 2 metres to the left of the taxiway guideline until the collision was imminent.

Total	Pilot Licence Hours on Type	Rating	Record Number
	Private		8541003
vare that t es before	the airspeed was reduc	ing below the op	he was endeavouring to otimum and applied some I power and carried out a
rn off. ted to div	ert to Parafield. During	the subsequent	landing the nosegear leg
	Commercial 1500	Elight instruct	8521013 tor grade 1 or 2
struck a f	ided to demonstrate a	forced landing	sequence. Descent was ed paddock. Control was
	Commercial 90	Instrument ra	8511008 ting class 3
		ly. A go around v	vas carried out, and after se gear collapsed during
n. Due to	o standing water on th	e grass strip an g grass. The flap	that the wind favoured a d a tailwind component, s were left in the landing
	Commercial 97	Agricultural cl	8521014
	51	flight instructo	
ocation o		ound the paddoo	ck. After cleaning up the ly forgot the presence of
	Private 20	None	8531007
nainwhee	I tyre was probably flat,	and subsequent	e pilot applied full power tly positioned the aircraft egan to collapse and the
	manufacturer in releva		in the side-brace centre- ictions. Compliance with
	Commercial — he 1085	licopter None	8541004
lot electe elling poi anded he engine ha	ally check the amount of d to carry out a further nt the engine suddenly avily. d failed due to fuel exha	of fuel remaining. short mustering stopped. The pi austion. The last	Although the second of task before returning to lot entered auto-rotation landing to check the fuel
the overe	stimation of fuel remain	ing, although bel	ow required reserves, at
	Private 350	None	8521017
truck. Su	bstantial damage was	caused to the ri	ght wing of the aircraft,
	Commercial		8521016
	1500		
	Glider	Olider	8511011
lose to hi	143 s intended destination.	Glider The landing was	uneventful and the pilot

the glider dropped slightly and became caught in long grass. The glider ing to the right and left again before the pilot could release the tow. The

Private

1130

inverted.

Mt Beauty Vic

52

604

8531010

50 None Enroute to his planned destination the pilot flew around the Mt Beauty area for several minutes. He had not previously landed at the strip and had not intended to on this occasion, however after watching other aircraft operating a decision to land was made. A go-around was made from the first approach as the aircraft was high on late final. Touchdown from the subsequent approach was made well into the strip and the aircraft bounced. A go-around was initiated but while turning to avoid trees the left wing struck the ground and the aircraft cartwheeled, coming to rest

Witnesses reported that during the go-around the aircraft adopted a steep nose high attitude but did not climb. The turn left was initiated whilst the aircraft was in this attitude. No fault was subsequently found with the engine or associated systems. The pilot had probably established the aircraft in a steeper than normal attitude because of the presence of a hill adjacent to the strip.

Date	Aircraft type & registration			Pilot Licence		Record Number
Time	Location	Age	Hours Total	Hours on Type	Rating	

13 Mar 85 Hiller UH12-E VH-FFT Commercial - helicopter 8511012 1500 Charleville 146NE 38 4000 2000 Instrument rating 1st class or class 1 The pilot had landed the helicopter in a clearing in order to refuel from drums carried in the aircraft. During the subsequent take-off into the strong wind prevailing, downdraft was experienced as the aircraft approached a heavily timbered area. A turn was carried out to avoid the trees but the combined effects of the downdraft and the downwind turn resulted in the helicopter touching down heavily. The impact forced the landing skids rearwards, bending the associated vertical support members.

14 Mar 85	Cessna 182F VH-WPC			Private rest	ricted	8521021
1345	Bankstown NSW	63	186	18	None	
TI		A		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the strength has not a	O I I I I I I I I I I I I I I I I I I I

The pilot was carrying out a series of practice circuits and landings. On this particular approach the aircraft bounced after touchdown. The pilot applied some power in an attempt to cushion the subsequent touchdown, however the aircraft struck the ground heavily and bounced again. A go-around was conducted and was followed by a normal landing. Post-flight inspection revealed damage to the nose strut, the engine firewall area and the propeller

15 Mar 85	Grumman 164A VH-SLK			Commercial		8511013
0830	Jondaryan Qld 30N	39	11700	5500	None	
The pilot had a	praved the paddook using a sorie	e of rune in	an east-west direct	tion narallel to now	or lines along the pr	operty boundary He th

then decided to do a clean-up run in a north-south direction, but forgot about the presence of the power lines. During the pull-up at the end of the run the aircraft flew into the wires and subsequently struck the ground heavily 219 metres further on.

19 Mar 85	Piper 30 VH-RBT			Senior commercial	8521020
1718	Coffs Harbour NSW 23		2550	90	Instrument rating 1st class or class 1
					with instrument rating

When the gear was selected down it did not fully extend and the gear circuit breaker tripped. Initially the circuit breaker could not be reset nor could the gear be lowered using the emergency system. The circuit breaker was subsequently reset and a gear down indication obtained. Shortly after touchdown the aircraft yawed until it was travelling backwards. The tailskid struck the runway and the aircraft came to rest after turning through a further 90 degrees. The right main wheel was found to have turned through 90 degrees because the scissor linkage arms had become disconnected.

A castellated nut and its retaining split pin was found to be missing from the bolt which joins the scissor linkage arms. The reason for the loss of these items could not be positively established.

19 Mar 85	Beech V35 B-MK2 VH-ILO			Private restri	cted	8541005
1530	Robe SA 25SE	40	63	7	None	

The aircraft was parked about 40 metres from its hangar. After carrying out a normal daily inspection the pilot boarded the aircraft with the intention of conducting some practice circuits and landings. As soon as the engine was started it developed full power, the aircraft accelerated rapidly and collided with a truck which was parked in the hangar.

The pilot had not flown for four months and most of her experience was on a more basic aircraft type. The pre-flight and engine start sequences were attempted without using the checklist. After the engine had started the pilot tried to reduce power but did not depress the throttle-lock of the vernier control. It is possible that the cabin heat control, which was selected on, could have been mistaken for the park brake, which was not set, as they are both situated in the same panel.

23 Mar 85 Piper 28-K180 VH-Kie Commercial 855 IC 1600 Mundijong WA 51 8076 32 Flight instructor grade 1 or instrument rating		Commercial 32	8076	51	Piper 28-R180 VH-KIE Mundijong WA	23 Mar 85 1600
--	--	------------------	------	----	--------------------------------------	-------------------

The student pilot was undergoing a conversion onto the aircraft type. As part of the conversion, the instructor closed the throttle and requested the student to demonstrate a forced landing. At about 600 feet agl, the instructor, being satisfied with the exercise, advised the student to goaround. The throttle was opened but the engine did not respond. The instructor took control but was unsuccessful in his attempts to restart the engine. The aircraft was landed in a paddock and ran through a fence.

The exercise was carried out conforming to the checklist requirements, one of which was to switch the fuel boost pump on. Investigation revealed that the engine would not idle with the pump on. The engine had been out of service, unpreserved, for 17 months and the fuel regulator diaphragm was sticking to its guide and seal assembly causing the engine to run rich at idle and stall. Although the instructor took control at 600 feet, attention was diverted from the forced landing to restarting the engine.

24 Mar 85	Piper 38-112 VH-FLA			Student		8511014			
1415	Archerfield Qld	17	39	39	None				
On final approach, the pilot reported that the aircraft encountered a strong headwind. At about 30 feet above the ground the aircraft began to sink and the stall warning sounded. The pilot applied some power and selected a higher nose attitude, but the aircraft landed heavily on the									
	bounced onto the nosewheel an								

26 Mar 85	Zenith CH200 VH-MAD			Private		8531012
0815	Dixons Creek Vic	66	617	310	None	0001012
	wn occurred about one third of	the way alo	ong the 518 me	tre strip. A slight bou	nce followed and as	s soon as the aircraft had
	ground again the brakes were ap					

punctured by		off attempt. An inspection of the strip immediately	
30 Mar 85	Cessna 152 VH-TNX	Student	8531013

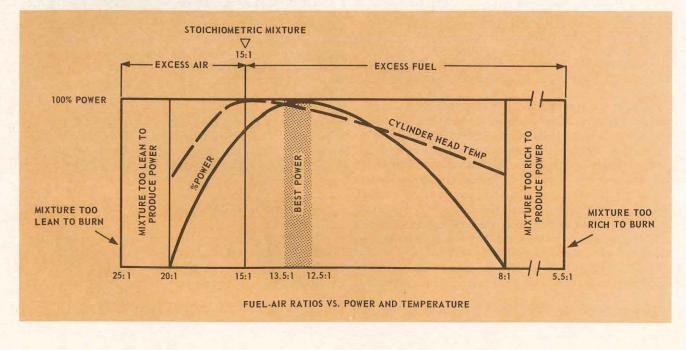
17 None 1125 12 12 Melton Vic During the pilot's second solo flight the aircraft bounced twice on landing. The pilot persisted with the landing attempt and applied forward control column pressure after each bounce. Following the second bounce the nose wheel struck the ground heavily and was torn off and the aircraft overturned.

31 Mar 85	Cessna 172M VH-TCB			Private		8551008
1730	Moonera WA	64	1491	326	None	
After encount	tering navigational difficulties, th	ne pilot became o	concerned that he	may not reach his des	tination before last lig	ht. He decided to land on
	omestead. While the aircraft wa					
the pole.						is in the second second

Know your systems: the mixture control

Aircraft engine mixture controls are often coloured red to indicate that they should be used with caution. Correct use of the mixture control in flight for adjusting the air-fuel (A-F) ratio is one of the most important items in the operation of engines. Proper leaning of the mixture provides smooth, efficient engine operation, more power for a given power setting, and best range and endurance; on the other hand, misuse of the mixture control can seriously damage or ruin an engine.

The following occurrence is typical of those associated with incorrect operation of the mixture control.


After only a brief flight, the engine of a Piper PA28 suffered a partial loss of power, which was accompanied by severe vibration. The pilot completed a precautionary landing as quickly as possible.

On investigation it was found that the number 2 exhaust valve head had separated from the valve stem. There was evidence of valve 'necking' (which means narrowing and, therefore, weakening of the valve), while there was also excessive clearance between the valve stem and guide. Both of these conditions are generally indicative of excessive, localised 'hot spots' within an engine, which in turn are related to an incorrect A-F ratio. In this instance this was attributed to the use of improper fuel leaning procedures.

As is the case with any aircraft system, pilots will appreciate its purpose better if they understand how it works.

Air-fuel ratio

The air-fuel ratio is the ratio between the weight of air and the weight of fuel that goes into an engine's cylinders. Gasoline will burn in a cylinder if mixed with air in a ratio of between 8 parts air to 1 part fuel and 18 parts air to 1 part fuel, although in very general terms the best power range may be considered to be

between 12:1 and 16:1, with 15:1 being the accepted theoretical best chemically correct air to fuel mixture. In many aircraft engines the most practical air to fuel ratios vary between 11.5:1 and 14:1, with the rich mixture used at high power output and lean mixtures customarily used at lower cruising powers.

The key role in controlling the mixture ratio is played by the carburettor or fuel injection system. Because gasoline cannot ignite or burn when in the liquid state, it must first be vaporised and mixed with the correct amount of air. The carburettor or fuel injector measures the approximate quantity of fuel to be supplied to the engine, atomising and mixing the fuel with air in the correct proportion (i.e. A-F ratio) before the mixture enters the cylinders. This proportioning must be done accurately regardless of the speed, power setting and altitude at which the engine is operating.

Unlike car engines, aircraft engines must operate over a wide range of altitudes. Carburettors and fuel injection systems are normally calibrated for sea-level operations, which means that the mixture of air and fuel will be correct for the power selected at sea level with the mixture control in the 'full rich' position.

As an aircraft climbs to higher altitudes the air density decreases, that is, the given volume of air will not weigh as much as it would at a lower altitude. Therefore, the weight of air entering the carburettor/injector will decrease, although the volume

remains the same. The amount of fuel metered by the carburettor/injector depends on the volume, not the weight, of air. As altitude increases the amount of fuel entering the carburettor/injector will remain approximately the same for any given throttle setting. Thus, since the same amount (weight) of fuel is metered by the carburettor but there is a lesser amount (weight) of air, the air-fuel mixture becomes richer as altitude increases.

To compensate for this, aircraft engines are equipped with manual and/or automatic mixture controls.

The mixture control

This leads to the central question: what does the mixture control do? The answer is that it compensates for the decreased air density by metering the amount of fuel which passes through the main jet in the carburettor or to the injectors. It is used to reduce the amount of fuel flow and maintain the correct A-F ratio. This in turn reduces fuel consumption and provides smoother engine operation. For the majority of GA aircraft this leaning of the mixture is effected manually.

Engine considerations

Two important factors associated with the A-F ratio are those of engine operating temperature and power output. Temperature, recorded as cylinder head temperature (CHT), is indicative of the 'burning process' taking place within the cylinders, while aircraft performance parameters such as speed, range and endurance are of course directly related to engine power output.

The relationship of the A-F ratio to power and temperature is shown in Figure 1. Note that the A-F ratio of 15:1 is known as the stoichiometric mixture, which is the chemically correct mixture for all of the fuel and all of the air to burn.

This leads to the question of fuel distribution. In a carburettor-equipped engine the intake manifolds and induction pipes are used to distribute the fuel and air charge to the various cylinders. Those cylinders which are the furthest from the carburettor often receive a slightly leaner mixture than those closest to it. Because of this unequal fuel distribution the temperatures within the cylinders will tend to vary. This can be important when the pilot uses the mixture control to lean the mixture.

If a pilot uses extremely lean mixtures without reference to proper instrumentation, localised 'hot spots', coinciding with the areas of leanest mixture, can be created. Depending on where the temperature probe for the CHT gauge is located, cockpit indications in such circumstances may show that the engine is operating at normal temperatures, when in fact an exhaust valve and seat, for example, are overheating.

This apparently was the case with the fractured valve stem which caused the engine failure in the incident described at the start of this article.

Note that while fuel injection provides better fuel distribution than carburettion, fuel injected engines can still be leaned excessively.

Two other aspects of mixture control raised in Figure

1 need elaboration; these are the conditions of excess air or fuel, and 'best power'.

Excess air or fuel

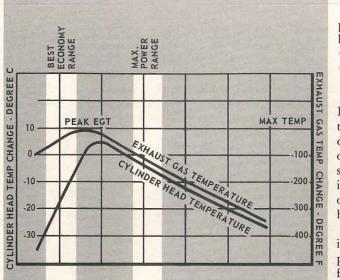
Figure 1 shows that for mixtures less than the stoichiometric, there is more air in the cylinders than is needed for complete combustion, while on the right side there is more fuel than necessary.

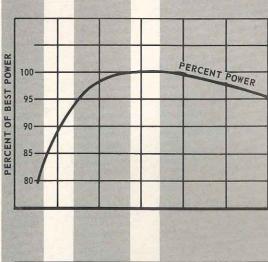
For normally aspirated (i.e. unsupercharged) engines, recommended operating range CHTs are always maintained by selecting a mixture richer than the stoichiometric mixture. The same technique is almost invariably used for supercharged engines although, if approved by the manufacturer, some large supercharged engines may be operated in the 'excess air' range, as the amount of excess air in such engines will act as a coolant. For example, if the manual mixture control of a supercharged engine is moved towards the lean position, CHTs will be hottest when the A-F ratio is 15:1, but as the mixture is leaned still further, temperatures will return to cooler, more proper values. To reiterate, this should be done only with the manufacturer's approval, while unsupercharged small aircraft engines should never be leaned to this extent as excessive temperatures will result.

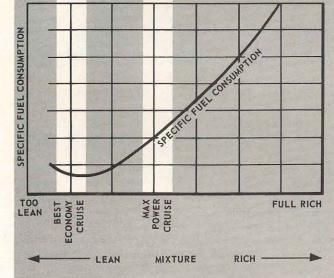
Best power mixture

The 'best power' mixture is that A-F ratio at which the most power can be obtained for a given throttle setting. By definition, 13.5:1 A-F ratio is 'lean best power' and 12.5:1 A-F ratio is 'rich best power', i.e. any mixture between 13.5:1 and 12.5:1 is a 'best power' mixture. This represents an optimum setting at which to operate an engine.

Instructions for adjusting the mixture control to achieve a 'best power' setting are given in Pilots' Operating Handbooks.


Excessively lean mixture


As the occurrence described at the start of this article illustrated, using a mixture that is too lean can seriously damage an engine. In addition to causing rough running, back firing, over-heating or sudden 'cutting out', excessive leaning can also initiate detonation and pre-ignition.


Detonation. Detonation is the spontaneous explosion of the unburned charge in the cylinders after normal ignition. If the temperature and pressure of the unburnt portion of the A-F charge reach critical values, combustion will begin spontaneously. The result is a sudden and violent explosion - i.e. detonation - of the charge rather than the relatively slow burning of normal combustion.

Continued operation when detonation is present can result in dished piston heads, collapsed valve heads, broken rings; or eroded portions of valves, pistons and cylinder heads. Complete and sudden engine failure can result.

Since it is very important to avoid detonation, it is

well to consider the principal factors which cause it. As far as the pilot is concerned, those over which he can exercise control are the octane rating of the fuel, mixture and, where applicable, manifold pressure.

Usually detonation cannot be recognised from the cockpit through sound or engine roughness; therefore,

protection from its possible occurrence must be provided by:

• engine design; and

 adherence to correct engine handling procedures by pilots.

Pre-ignition. Pre-ignition is the uncontrolled firing of the A-F charge in advance of normal spark ignition. It is caused by the presence within the combustion chamber of an area which is incandescent (red hot) and which serves as an ignitor in advance of normal ignition. Preignition may result from a glowing spark plug electrode or exhaust valve, or perhaps a carbon or lead particle heated to incandescence.

As with detonation, such operating factors as high intake air temperatures, lean mixtures, high manifold pressures and improper cooling are likely to set the stage for pre-ignition. Pre-ignition may start detonation and, conversely, detonation may start pre-ignition because of the high temperatures involved.

Pre-ignition can be just as destructive as detonation.

Rich mixture

Before discussing manual leaning techniques, an important point concerning rich mixtures must be made. Operating with the mixture more rich than required is not necessarily 'being kind' to the engine — in fact, the opposite could well be the case. Operating an unsupercharged engine at high altitude with an excessively rich mixture not only wastes fuel, but the power produced will be less than that which is available at that altitude with the mixture correctly leaned. Surplus fuel is rarely required for combustion chamber cooling at high altitudes, and the use of mixtures that are too rich usually only introduces other problems such as spark plug fouling. Spark plugs are designed to operate within

certain heat ranges in order to function properly and operate without fouling. An excessively rich mixture will lower the temperature of the spark plug centre electrode below normal which, in turn, will lead to the formation of carbon and lead deposits. These deposits are

electrically conductive and when they reach a sufficient depth, the electric current will flow through the deposit rather than 'jumping the gap' in the spark plug to ignite the air and fuel charge. It is essential, therefore, that an A-F ratio is maintained which will provide sufficient heat in the combustion chamber to vaporise any deposits which may form on the ceramic centre of the spark plug.

Manual leaning techniques

Depending on the power settings used and engine handling limitations contained in Pilots' Operating Handbooks/Aircraft Owners' Manuals, engines may be operated at lean mixture settings corresponding to maximum power and, where specifically permitted, best economy. The three basic recommended techniques for manual leaning are the tachometer/airspeed indicator method, the fuel flow or pressure gauge method, and the exhaust gas temperature method.

Tachometer/airspeed indicator method. The tachometer and, in favourable conditions, the airspeed

indicator, are useful guides in establishing these mixture settings. For aircraft with fixed pitch propellers, the throttle should be set for the desired cruise RPM as shown in the Owners' Manual, and the mixture then gradually leaned from full rich until either the tachometer or the airspeed indicator gives a maximum reading. At peak indication, the engine is operating in the maximum power range. It should then be enriched, to prevent excessive temperatures, in accordance with the manufacturer's instructions. In the case of constant speed propellers, the mixture should be leaned until the airspeed indicator reading peaks or there is a significant power loss or evidence of rough running. Again, the mixture should then be enriched until the engine runs smoothly and power and airspeed are fully restored, and approved operating CHTs achieved.

Where the use of cruise powers at best economy settings are permitted, the mixture is first leaned from full rich to maximum power, then leaning is slowly continued until the engine begins to run roughly or power and airspeed decrease rapidly. When either occurs, the mixture should be enriched sufficiently to obtain an evenly firing engine or to regain most of the lost airspeed and engine RPM. Some engine power and airspeed must be sacrificed to achieve a best economy mixture setting.

Fuel flow or pressure gauge method. For aircraft with fuel-injected engines, the mixture can be leaned manually by using the fuel flow or pressure gauge. Settings for a given cruise power and altitude may be obtained from tables or other data provided by the aircraft manufacturer, or the indicator may be marked with the correct flow for each power setting. For any given set of conditions, the pilot need only lean the mixture to the specified fuel flow value to obtain the correct mixture.

Exhaust gas temperature method. One of the most accurate methods of establishing correct mixture strengths is to use an exhaust gas temperature gauge. This device measures the temperature of the exhaust gases and in this way indicates the proportions of the air-fuel mixture. To establish the maximum power setting by this means, the mixture is leaned to the point at which the temperature reading reaches a maximum, and is then enriched again, to achieve a fixed temperature drop. Whenever best economy operation is permitted by the aircraft owners' handbook or the engine manual, the mixture may be leaned to peak EGT. The accompanying graphs (Figure 2) show that that peak EGT occurs essentially at the rich edge of the best economy mixture range. They also show that operation at peak EGT not only provides minimum specific fuel consumption but also 95-96 per cent of the engine's maximum power capabilities for a given engine speed and manifold pressure.

Aircraft with turbo-charged engines frequently have an exhaust gas temperature pick-up installed in the turbine inlet to measure turbine inlet (exhaust gas) temperature. The procedures for leaning these engines, using turbine inlet temperature, are slightly different, and the technique and reference temperatures published in the owner's handbook should be strictly observed. For these installations, it is important that the maximum turbine inlet temperature specified by the manufacturer is not exceeded.

16 / Aviation Safety Digest 126

General considerations

M any pilots believe they should never lean the mixture for operations below 5000 feet. The theory behind this practice is that, by the time an aircraft with an unsupercharged engine has climbed to 5000 feet, the power output will have dropped to about 75 per cent at the throttle setting normally used for climb, and at this power, there is less likelihood of an engine being damaged through improper leaning techniques, since the cylinders and other engine parts are operating at lower temperatures. The fact of the matter is, however, that unless specifically prohibited in the owner's manual, the mixture may be leaned at any height, provided the power setting is below 75 per cent.

The mixture must always be returned to full rich before increasing power, and then reset. It should also be reset for any change in altitude or the application of carburettor heat. It is good practice always to select fullrich mixture before joining the circuit for a landing. Other distractions near the ground can cause the mixture setting to be overlooked and a pilot could encounter serious difficulties with detonation or overheating if a goaround became necessary.

When setting the mixture by means of an exhaust gas temperature gauge, it is not sufficient merely to adjust the mixture to obtain a given temperature reading based solely on previous experience. Not only are there likely to be characteristic variations in exhaust gas temperature from engine to engine, but changes in calibration of the indicating equipment can also lead to inadvertent overleaning of the mixture unless the correct 'temperature drop' method is always used.

Similar considerations apply also to setting the mixture using a fuel flow gauge in that, while the specified fuel flows have a built-in margin of safety under normal operating conditions, unless the gauge remains accurate within close limits, the engine could be receiving a mixture that is either too rich or too lean. Thus, while determining the correct mixture by means of a fuel flow or exhaust gas temperature gauge is clearly preferable to setting it 'by ear', the accuracy of settings established by these methods still depends on the cockpit gauges and sensing units remaining close to correct calibration at all times.

Finally, regardless of the leaning technique used, careful consideration must also be given to such factors as any reduction in engine power, actual fuel consumption, engine cooling, smoothness of operation and other relevant engine limitations. As a final check, once the mixture has been set for cruise operation, the cylinder head temperature and oil temperature gauges should be constantly monitored. Although these two instruments have slow response times, the trend of their readings is a useful guide in maintaining correct mixture strengths and preventing engine damage.

Conclusion

For engines equipped with manually operated mixture controls (which means most types of modern light aircraft engines), the pilot has a particular responsibility to understand the fundamentals of engine operation and to use the mixture control safely and intelligently •

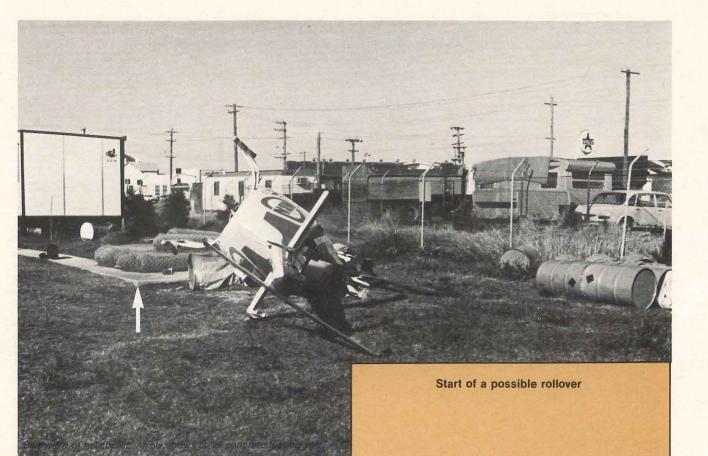
Helicopters and ground fires

One of the most regular — and yet at the same time avoidable — accidents in Australian aviation is that of helicopters 'setting fire to themselves'. As the brief narratives of three such accidents which occurred in a recent 10 month period illustrate, the same causal factors are almost always present.

- A pilot carrying out an aerial survey landed in an area of long, dry grass to 'take a breather'. The engine was left idling and the hot exhaust ignited the grass on the port side, suddenly and intensely. The pilot vacated the helicopter rapidly and watched it burn out from a safe distance. Although he had 2450 hours total flight time, 450 hours on type and a Commercial Helicopter Licence, he had not been aware of this perennial helicopter problem.
- While involved in his first solo mustering flight a young pilot decided to take a short rest and landed in a spinifex-covered clearing. The helicopter's exhaust set fire to the spinifex; in the ensuing conflagration the aircraft was destroyed.
- The helicopter had landed in long grass to drop off a passenger. However, before the passenger could disembark, the aircraft's hot exhaust started a grass fire. Finding himself confronted by a wall of flames the passenger retreated across the cockpit, and in doing so prevented the pilot from taking any action to try to save the machine. With the helicopter alight both men escaped and watched it burn out.

Comment

Fortunately no-one was hurt in any of the three accidents summarised above, although the potential clearly is considerable: for example, the pilot of the helicopter in the accompanying illustration (taken from another 'self-immolation' accident) sustained serious burns.

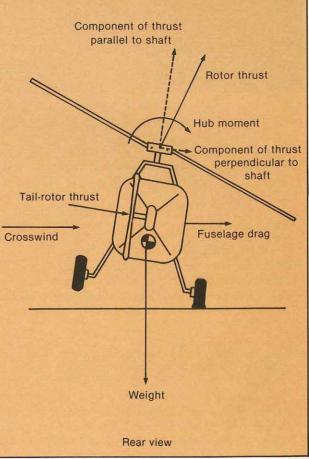

Given the persistent occurrence of this type of accident it seems, to state the case mildly, extraordinary that, either supervisors and senior pilots apparently do not brief all of their employees on this subject, or, some pilots apparently choose to ignore the advice when it is given. That advice is simple – helicopter pilots need to be careful where they land \bullet

Notable quote

As a postage stamp which lacketh glue, so are the words of caution to a fool; they stick not, going in one ear and out the other, for there is nothing between to stop them.

Courtesy of Flight Safety Bulletin

Dynamic rollover


A Bell 206B had been parked adjacent to a refuelling platform 60 millimetres high. As the pilot was bringing the aircraft to the hover prior to takeoff, the right skid contacted the platform. The pilot attempted to correct with cyclic but the helicopter rolled to the right and came to rest on its right side near the platform.

The contact between the skid and the edge of the platform had induced dynamic rollover. Evidently the pilot had not identified the problem in time to take the appropriate corrective action of lowering the collective control in order to place both skids on the ground.

Aerodynamic forces

In flight, high bank angles are generally of no great concern because control around the roll axis is usually where the helicopter is at its best. On the ground, however, even a moderate bank angle can be disastrous if it is enough to tip the machine over.

The primary helicopter upsetting moments are attributable to rotor flapping, with the resultant tilted rotor thrust and hub movements as shown in the diagram. Sometimes tail-rotor thrust and wind on the fuselage also contribute. The moment that keeps the helicopter from tipping over comes from the weight acting between the two wheels or skids. If the helicopter rolls on its landing gear, this stabilising moment diminishes; it goes to zero if the aircraft ever rises on one wheel far enough to put the centre of gravity (CG) right over that wheel. If the helicopter is sitting on a slope, it already has a reduced restoring moment and a lateral CG

position (perhaps caused by fuel sloshing). A narrow landing-gear tread or, if on a ship, a rolling deck, compounds the problem.

A rollover can happen in calm air if the stick is being held off-centre enough during takeoff, but a crosswind can make it even more likely. Even in a strong crosswind, there is little or no main-rotor flapping due to non-symmetrical aerodynamics until the collective is raised for takeoff, then the non-symmetrical aerodynamics produce flapping (sometimes referred to as 'blowback'). In addition, as the shaft is tilted against the springiness of the landing gear, the increased angle of attack generates even more flapping. Thus, if the pilot is not compensating for the disc tilt with cyclic pitch, he will find the upsetting effects increasing at the same time that the restoring effects are decreasing.

Recovery techniques

In a normal takeoff of most single-rotor helicopters, one landing gear comes off the ground first but, since this happens just as the aircraft becomes airborne, this action is not associated with a rollover. If, however, one landing gear comes off the ground with only partial thrust on the rotor, a rollover may be starting. In this situation, the pilot might try to hurry the takeoff by raising the collective. This is usually a mistake since the increased thrust in the same direction results in an increase of the upsetting moment.

Another choice is to apply lateral control to put the gear back on the ground—but this action may be too late, especially if the initial motion came as a surprise. If

In brief

During a dual training exercise in a C152 with a student pilot a series of circuits had been satisfactorily completed. At about 450 ft when climbing away the engine note suddenly changed and the rpm fell significantly. The instructor took control and landed without damage on the sterile area beside the runway (contractor plant was working on that end of the runway).

The air filter had disintegrated and a loose piece had become lodged in the carburettor, partially blocking the airflow. A new filter was fitted and engine performance was returned to normal. The filter was very dirty and clogged. The operator's fleet was checked and all were given new filters. The report commented that this was an example of the generally poor standards of maintenance of these particular aircraft. (NB: this was a UK occurrence).

Air filters should be kept clean and uncontaminated, as collapse of this simple item can have very serious consequences. This also makes economic sense since obstruction of the free flow of clean air will result in an inefficient, excessive fuelburning engine. This can be demonstrated by keeping careful fuel records following fitment of a new filter (on a car or an aeroplane). an appreciable rolling velocity has developed, it will take a second or two to stop the motion and by this time the helicopter may have tilted irrevocably beyond its critical tip-over angle. This is especially true on the deck of a ship rolling in the same direction as the helicopter.

A reduction of collective pitch to get both landing gears firmly on the ground is the accepted cure for a dynamic rollover but this should be done gently. If the helicopter is dropped too fast it might bounce on the gear that was in the air and start rolling in the other direction.

Although pilot distraction or inattention is usually required to set up the conditions for a dynamic rollover, some accidents have occurred when the liftoff was attempted with one landing gear still stuck to the ground by mud, ice or a tiedown.

The possibility that a pilot may cause a helicopter to rollover on the ground is increased by very stiff hingeless rotors, since even at flat pitch a little out-of-trim cyclic pitch can produce a high, upsetting hub moment. In the Lockheed AH-56 Cheyenne, to discourage the pilot from holding the stick off-centre, a device was installed that stiffened up the control centring springs whenever the aircraft had its full weight on the landing gear. The device was deactivated on takeoff as 'squat switches' sensed the partial extension of both landing gear oleos

(The last two sections of this article reprinted by permission of Rotor & Wing International, ©PJS Publications Inc 1981, R W Prouty author.)

The pilot of a PA31 was on approach to a UK airport behind a Boeing 737. At the outer marker he reduced speed to 110 knots to give a greater separation. The approach was on the centreline and glideslope with only light atmospheric turbulence. At 300 ft he was cleared to land; landing flap was set and speed reduced to 95 knots crossing the threshold. Suddenly at about 25 ft a severe buffet was experienced and the aircraft rolled violently to the left through 25–30 degrees until application of full aileron, rudder and asymmetric power controlled the roll. The aircraft then managed to climb away from the ground, experiencing two more slight buffets with the rolling effect diminishing in strength. A normal landing was made further down the runway.

The pilot felt that had an overshoot been initiated when the buffet was first experienced the aircraft would have climbed above the vortex. His company training highlights the problems of wake turbulence and suggests a high approach path to a non-limiting runway as one solution. In this case it was not possible as ATC had issued a 'land after' clearance with the B737 clearing slowly two-thirds down the runway

It all began one Saturday morning: having recently finished my Unrestricted Private Pilots Licence I had

completed several solo flights as well as some reasonably long distance flights with my wife as passenger. I had been checked on the Cessna 172 and 172RG

and was that day completing my load check on the 172RG prior to flying to Dubbo the next day with my wife, cousin and his wife.

The following morning bright and early we departed from Bankstown and had an uneventful run until our reporting point abeam Burrendong Dam (I always prefer to fly FULLSAR/FULL REPORTING). Upon transmitting our position report I was unable to receive any response. It was only when we were within sight of Dubbo airfield that two-way communications were established, and then only on COM 2 — by trial and error I determined that the COM 1 selector switch was inoperative.

On landing at Dubbo we encountered a strong crosswind gust, landing heavily on the right main gear wheel, and on inspection at the tie-down bay it was noticed that the tyre was unserviceable.

We visited the Western Plains Zoo as planned to see our recently sponsored wallaby and on our return to the field were advised that a replacement tyre would not arrive until the following morning. My passengers caught the 3 pm XPT and arrived at Parramatta 7 hours later while I checked into a motel and arranged to attend to some business and see our other major customer in the area the following morning.

The next day, having concluded my business, I filed a flight plan, refuelled the Cessna and, having confirmed that the COM 1 was still unserviceable, opted to return to Bankstown using COM 2 only.

Departure and en route reporting was OK until Bathurst when the weather began to look dirty despite an earlier forecast indicating VMC over Katoomba. I flew around the 'hill' at Bathurst at approximately 4500 feet with clear visibility to Katoomba, although low cloud appeared to be sitting on the ranges at some distance to either side — it almost appeared that there was an archway cleared over Katoomba for me!

Sucked into the trap I proceeded towards Katoomba when without warning the cloud dropped within what seemed to be about 30 seconds. On turning in cloud to return to Bathurst I noticed that my senses had betrayed me and that instead of completing a level rate 1 turn, I was instead losing height at the rate of 1000 feet per minute in a 60 degree bank to the right! That's when I saw the treetops . . . (still quite some distance below). My immediate response was to curse myself for failing to heed instructions to rely on the *instruments* and *not* my senses.

FULL RICH FULL PITCH FULL POWER LEFT RUDDER LEFT AILERON WINGS LEVEL BACK PRESSURE ON THE CONTROL COLUMN BEST CLIMB SPEED, POSITIVE RATE OF CLIMB, CONFIRM GEAR AND FLAP UP I switched the transponder from 'standby' to 'on' and squawked ident.

Sydney this is Kilo Delta Echo on climb through 5000 feet approximately ten miles west of Katoomba; I have inadvertently entered cloud and am not certified for IMC (by this time I knew I was clear of terrain . . . all I had to do now was maintain control!) require assistance . . . am attempting to level out at 5000 feet and then maintain a heading, will await further instructions.

Sydney then advised me to climb to 8000 feet in an attempt to get above cloud and advised that they would clear the frequency and attempt to radar vector me to an area safe for descent; they also ascertained my endurance as being approximately 180 minutes. That's when the radio started to play up, and I lost communications with Sydney.

The aircraft was fitted with Autopilot, 2 VORs, DME and ADF. With the radio playing up I elected to forget the VOR/Autopilot and tried instead to monitor the Bankstown NDB. However, I was having enough trouble maintaining level flight and attempting to set a course without also experimenting with instruments I was familiar with only at a theoretical level.

I found that I was receiving several frequencies at once, with Sydney being over-ridden by Bankstown on 118.1 and 121.1.

I turned the whole set off and on again several times and tried to complete the standard inflight emergency radio checks as best I could.

All of a sudden I had Bankstown loud and clear telling me to switch to another frequency . . . and there was Sydney, clear as a bell!

When I re-established contact with Sydney I had settled down and was able to respond readily to their rapid request for another ident. and almost immediately a change of heading (this time I was located as being 25 miles north-west of Sydney — obviously in the RAAF's airspace at Richmond). Unbeknown to me there was a twin on an IFR flight to Wellington which had been instructed to climb to 7500 to allow me clearance, but which could not be contacted after I had been instructed to climb to 8000 feet — about the time my radio played up. The controllers apparently could only stand and watch as our blips converged on their radarscope.

The controller then advised that I was to continue on my heading at 8000 feet and that they would radar vector me to the vicinity of Camden and re-assess the situation . . . Hell, I was ready to fly to Canberra if necessary!

On approaching Camden I came across a 'bubble' in the clouds; it was clear from about 8500 down to ground

level within a diameter of approximately 1.5 miles. Immediately I commenced a turn and advised Sydney that it was my intention to commence a steep descending turn into VMC. After some hesitation they agreed. Ignoring my training I commenced a power-on descent and very soon found myself descending at a speed in excess of 150 knots with 60 degrees of bank . . .

WINGS LEVEL

THROTTLE SET

PROP SET FUEL SELECTOR BOTH

COWL FLAPS CLOSED

CARBY HEAT ON

10 DEGREES OF FLAP AT 130 KIAS

SELECT DESCENT ATTITUDE CONTROLLED DESCENT . . .

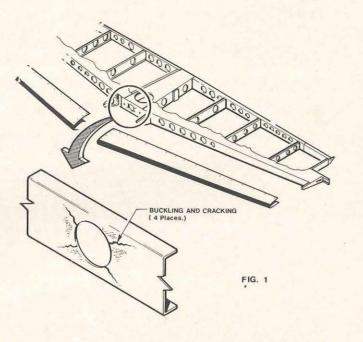
Down again and into VMC at approximately 3500 . . . sighted 2FC tower and Bankstown Field . . . Controller stayed with me through descent on course to 2FC and then very professionally said 'Change frequency now to Bankstown on 118.1'. My automatic response was 'Kilo Delta Echo'.

With a very strong southerly I was directed to land on runway 18 and subsequently directed to report to Operations.

This series of events underscores the ease with which difficulties can be encountered through a 'She'll be right' attitude.

After flying blind for a total of 25 minutes in Sydney/Richmond Controlled Air Space I must say that in hindsight I should have had the radio thoroughly checked at Dubbo and should have exercised more care in determining the cloud base over Katoomba.

I walked away from this one mostly by staying calm ... the first minute or two were the most harrowing as I was unsure that I was climbing clear of obstructions; however, once into cloud, concentration on instrument scan was paramount in saving the day. I plan to start Class 1 training soon


Incorrect ground handling procedures

During disassembly of a C172 for transporting, the horizontal stabilizer front spar doubler plate at the fuselage attachment point was found to be cracked in four places. All cracks originated at the lightening hole and varied in length from 12mm to 18mm (see Figure 1). There also was buckling of the stabilizer centre section skin and spar. Airworthiness engineers believed that this damage may have been caused by incorrect ground handling.

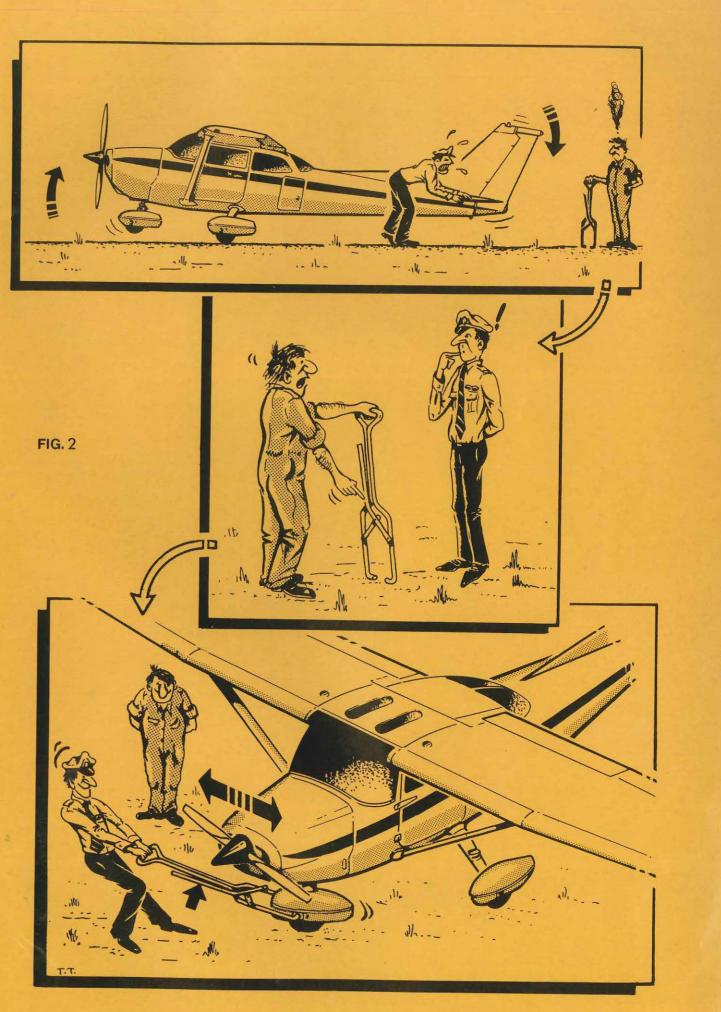
Some manufacturers of tricycle undercarriage aircraft approve alternative methods of manoeuvring of the aircraft on the ground when a towbar is unavailable.

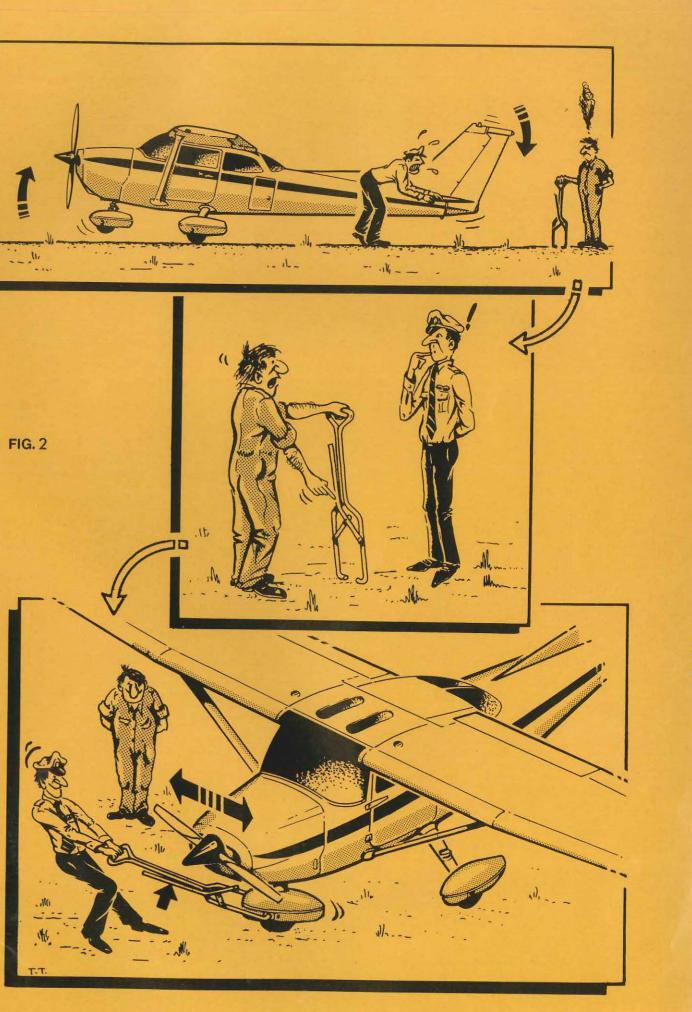
One such method involves pressing down at the horizontal stabilizer front spar adjacent to the fuselage to raise the nosewheel off the ground. With the nosewheel clear of the ground the aircraft is then turned by pivoting it about the main wheels. For example, the Cessna Model 172 series service manual details this technique.

It is important to note that if this method is used, downward pressure should be applied at no location other than the junction of the horizontal stabilizer front spar and the fuselage, as the application of force at locations outboard of this point will generate excessive leverage which could result in structural damage.

The preferred method of ground manoeuvring is depicted at Figure 2

Brush up on your aeronautical knowledge (Courtesy Canberra Aero Club.)


BECAUSE of the harsh comments made by the CFI in the last club magazine about the technical knowledge of members fronting for biennial flight reviews, he was asked to devise a 'standard guiz'. Here it is. The pass rate will remain at zero per cent.


BFR QUIZ NO. 1

- 1. Determine to an accuracy of one litre the holding fuel remaining after a flight from A to B, a distance of three standard isogonals, given the following:
 - fuel flow, 15mb per hour

density latitude, 40 per cent

- QNH, standard constipation rates.
- 2. Calculate the time you will see sunrise on 4 December in a leap year if you are flying east from J to K with 7 oktas of northerly drift and at right angles to the winter equinox (ignore CLIAS and LSALT factors).
- 3. If your answer to guestion 2 was ▶95°15'S, intercept nearest VOR radial and convert it to troy ounces of 100LL Avgas.
- 4. You are flying a TAS course from A to B using Adriatic QFE and a 120v headset. You find a disused flight level at right angles to track.
 - a) What action should you take immediately?
 - b) Would all POB need 100 per cent oxygen?
- 5. You are navigating with a Lamberts Incredible Chart. It has a scale of 1:3000 as measured by a Douglas Rectum.
 - a) Would the topography have a concise or adverse curve?
 - b) Would the curve be constant, given that the earth is a shereblat obroid?
 - c) Which standard calisthenic will be east/west and will it be straight or corrugated?
- 6. Your aircraft has a compass swing at 180°20'W and has since been flown three times. The depreciation card shows an accretion of 6° below ISA on the headings north to west. Given a fixed card DME, what would be the relative bearing to your destination after two nautical yards of ale? Can you complete this flight on a great circle track without an SSB HF on HP?
- 7. Convert the velocity of triangles into mb³ and multiply the result by your groubschpeken measured in degrees Cerberos.

