Final report


What happened

At about 0025 on 30 May 2016, freight train 9305 derailed at a fractured welded rail joint at Katunga in northern Victoria. The train consisted of two locomotives and 37 flatbed wagons carrying empty containers. Twelve wagons located mid-consist (wagon positions 6 to 17) derailed resulting in severe damage to about 350 m of track. There were no injuries.

What the ATSB found

The ATSB found that the fracture was at a flash butt weld joining early twentieth century rail. The weld contained microscopic defects within the crystalline material structure that indicated improper material processing during flash butt welding, and had probably existed for many years.

It was concluded that the fracture was probably the result of higher than normal loading due to inadequate support of the rail. The loss of effective support was probably the result of deteriorated sleeper condition. The deferral of the replacement of select sleepers through the location had increased the potential for rail fracture, although it was not possible to directly link this decision to this fracture.

The condition of the fracture surfaces indicated that the fracture was probably present for several days prior to the passage of train 9305. After the rail’s fracture, the loosening of the track fasteners allowed the lateral misalignment of the rail ends that led to the derailment of the train. The regime that may have detected the fractured rail before the track deteriorated to an extent that would result in derailment was ineffective for this track and its condition.

What's been done as a result

V/Line has revised their Technical Maintenance Plan schedule to clarify that front of train inspections cannot be used to replace hi-rail patrols on the Tocumwal line.

Further, V/Line intends undertaking a risk review of the appropriateness of its current condition based responses for sleeper condition, as set out the V/line standard for inspection and assessment. The ATSB has recommended that V/Line completes the risk review and implements safety actions to reduce the likelihood of derailment following a rail fracture.

Safety message

Systems of inspection should be designed to ensure detection of rail fractures before track deteriorates to a condition that results in train derailment. 

The Occurrence


Safety analysis


Safety issues and actions

Sources and submissions